Advertisement
Research Article| Volume 88, ISSUE 5, P331-338, May 2013

Effects of docosahexaenoic acid supplementation during pregnancy on fetal heart rate and variability: A randomized clinical trial

Published:February 22, 2013DOI:https://doi.org/10.1016/j.plefa.2013.01.009

      Abstract

      DHA (22:6n-3) supplementation during infancy has been associated with lower heart rate (HR) and improved neurobehavioral outcomes. We hypothesized that maternal DHA supplementation would improve fetal cardiac autonomic control and newborn neurobehavior. Pregnant women were randomized to 600 mg/day of DHA or placebo oil capsules at 14.4 (+/−4) weeks gestation. Fetal HR and HRV were calculated from magnetocardiograms (MCGs) at 24, 32 and 36 weeks gestational age (GA). Newborn neurobehavior was assessed using the Neonatal Behavioral Assessment Scale (NBAS). Post-partum maternal and infant red blood cell (RBC) DHA was significantly higher in the supplemented group as were metrics of fetal HRV and newborn neurobehavior in the autonomic and motor clusters. Higher HRV is associated with more responsive and flexible autonomic nervous system (ANS). Coupled with findings of improved autonomic and motor behavior, these data suggest that maternal DHA supplementation during pregnancy may impart an adaptive advantage to the fetus.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • DiPietro J.A.
        • Bornstein M.H.
        • Hahn C.S.
        • Costigan K.
        • Achy-Brou A.
        Fetal heart rate and variability: stability and prediction to developmental outcomes in early childhood.
        Child Dev. 2007; 78: 1788-1798
        • Christensen J.H.
        n-3 fatty acids and the risk of sudden cardiac death. Emphasis on heart rate variability.
        Dan Med. Bull. 2003; 50: 347-367
        • Christensen J.H.
        • Schmidt E.B.
        Autonomic nervous system, heart rate variability and n-3 fatty acids.
        J. Cardiovasc. Med. (Hagerstown). 2007; 8: S19-22
        • Holguin F.
        • Tellez-Rojo M.M.
        • Lazo M.
        • Mannino D.
        • Schwartz J.
        • Hernandez M.
        • Romieu I.
        Cardiac autonomic changes associated with fish oil vs soy oil supplementation in the elderly.
        Chest. 2005; 127: 1102-1107
        • Pivik R.T.
        • Dykman R.A.
        • Jing H.
        • Gilchrist J.M.
        • Badger T.M.
        Early infant diet and the omega 3 fatty acid DHA: effects on resting cardiovascular activity and behavioral development during the first half-year of life.
        Dev. Neuropsychol. 2009; 34: 139-158
        • Colombo J.
        • Carlson S.E.
        • Cheatham C.L.
        • Fitzgerald-Gustafson K.M.
        • Kepler A.
        • Doty T.
        Long-chain polyunsaturated fatty acid supplementation in infancy reduces heart rate and positively affects distribution of attention.
        Pediatr. Res. 2011; 70: 406-410
        • Gustafson K.M.
        • Colombo J.
        • Carlson S.E.
        Docosahexaenoic acid and cognitive function: is the link mediated by the autonomic nervous system?.
        Prostaglandins Leukot. Essent. Fatty Acids. 2008; 79: 135-140
        • Koletzko B.
        • Lien E.
        • Agostoni C.
        • Bohles H.
        • Campoy C.
        • Cetin I.
        • Decsi T.
        • Dudenhausen J.W.
        • Dupont C.
        • Forsyth S.
        • Hoesli I.
        • Holzgreve W.
        • Lapillonne A.
        • Putet G.
        • Secher N.J.
        • Symonds M.
        • Szajewska H.
        • Willatts P.
        • Uauy R.
        The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations.
        J. Perinat. Med. 2008; 36: 5-14
        • Brazelton T.B.
        • Nugent J.K.
        The neonatal behavioral assessment scale.
        3rd ed. Mac Keith Press, Cambridge1995
        • Moss M.
        • Colombo J.
        • Mitchell D.W.
        • Horowitz F.D.
        Neonatal behavioral organization and visual processing at 3 months.
        Child Dev. 1988; 59: 1211-1220
        • Vaughn B.E.
        • Taraldson B.
        • Crichton L.
        • Egeland B.
        Relationships between neonatal behavioral organization and infant behavior during the 1st year of life.
        Infant Behav. Dev. 1980; 3: 47-66
        • Colombo J.
        • Mitchell D.W.
        • Coldren J.T.
        • Atwater J.D.
        Discrimination learning during the first year: stimulus and positional cues.
        J. Exp. Psychol. Learn. Mem. Cogn. 1990; 16: 98-109
        • Lester B.M.
        Synergistic process approach to the study of prenatal malnutrition.
        Int. J. Behav. Dev. 1979; 2: 377-393
        • DiPietro J.A.
        • Larson S.K.
        • Porges S.W.
        Behavioral and heart rate pattern differences between breast-fed and bottle-fed neonates.
        Dev. Psychol. 1987; 23: 467-474
        • Folch J.
        • Lees M.
        • Stanley G.H.Sloane
        A simple method for the isolation and purification of total lipides from animal tissues.
        J. Biol. Chem. 1957; 226: 497-509
        • Zail S.S.
        • Pickering A.
        Fatty acid composition of erythrocytes in hereditary spherocytosis.
        Br. J. Haematol. 1979; 42: 399-402
        • Morrison W.R.
        • Smith L.M.
        Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride—methanol.
        J.Lipid Res. 1964; 5: 600-608
        • Smuts C.M.
        • Huang M.
        • Mundy D.
        • Plasse T.
        • Major S.
        • Carlson S.E.
        A randomized trial of docosahexaenoic acid supplementation during the third trimester of pregnancy.
        Obstet. Gynecol. 2003; 101: 469-479
        • Delorme A.
        • Makeig S.
        EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.
        J. Neurosci. Meth. 2004; 134: 9-21
        • May L.E.
        • Glaros A.
        • Yeh H.W.
        • Clapp 3rd, J.F.
        • Gustafson K.M.
        Aerobic exercise during pregnancy influences fetal cardiac autonomic control of heart rate and heart rate variability.
        Early Hum. Dev. 2010; 86: 213-217
        • Nijhuis I.J.
        • ten Hof J.
        Development of fetal heart rate and behavior: indirect measures to assess the fetal nervous system.
        Eur. J. Obstet. Gynecol. Reprod. Biol. 1999; 87: 1-2
        • Ten Hof J.
        • Nijhuis I.J.
        • Mulder E.J.
        • Nijhuis J.G.
        • Narayan H.
        • Taylor D.J.
        • Westers P.
        • Visser G.H.
        Longitudinal study of fetal body movements: nomograms, intrafetal consistency, and relationship with episodes of heart rate patterns a and B.
        Pediatr. Res. 2002; 52: 568-575
        • Popescu E.A.
        • Popescu M.
        • Bennett T.L.
        • Lewine J.D.
        • Drake W.B.
        • Gustafson K.M.
        Magnetographic assessment of fetal hiccups and their effect on fetal heart rhythm.
        Physiol. Meas. 2007; 28: 665-676
        • Acharya U.R.
        • Joseph K.P.
        • Kannathal N.
        • Lim C.M.
        • Suri J.S.
        Heart rate variability: a review.
        Med. Biol. Eng. Comp. 2006; 44 (10.1007/s11517-006-0119-0): 1031-1051
        • Brazelton T.B.
        Neonatal behavioral assessment scale.
        Spastics Int. Med. Publications, London1973
        • Als H.
        • Tronick E.
        • Lester B.M.
        • Brazelton T.B.
        The Brazelton neonatal behavioral assessment scale (BNBAS).
        J. Abnorm. Child Psychol. 1977; 5: 215-231
        • Osofsky J.D.
        • Danzger B.
        Relationships between neonatal characteristics and mother–infant interaction.
        Dev. Psychol. 1974; 10: 124-130
        • Lancioni G.E.
        Infant operant—conditioning and its implications for early intervention.
        Psychol. Bull. 1980; 88: 516-534
        • Lester B.M.
        • Emory E.K.
        • Hoffman S.L.
        • Eitzman D.V.
        Multivariate study of effects of high-risk factors on performance on brazelton neonatal assessment scale.
        Child Dev. 1976; 47: 515-517
        • Yang R.K.
        • Federman E.J.
        • Douthitt T.C.
        Characterization of neonatal behavior—dimensional analysis.
        Dev. Psychol. 1976; 12: 204-210
        • Jacobson J.L.
        • Jacobson S.W.
        • Fein G.G.
        • Schwartz P.M.
        Factors and clusters for the Brazelton scale—an investigation of the dimensions of neonatal behavior.
        Dev. Psychol. 1984; 20: 339-353
        • Lester B.M.
        • Als H.
        • Brazelton T.B.
        Regional obstetric anesthesia and newborn behavior—a reanalysis toward synergistic effects.
        Child Dev. 1982; 53: 687-692
        • Groome L.J.
        • Loizou P.C.
        • Holland S.B.
        • Smith L.A.
        • Hoff C.
        High vagal tone is associated with more efficient regulation of homeostasis in low-risk human fetuses.
        Dev. Psychobiol. 1999; 35: 25-34
        • Mirmiran M.
        • Maas Y.G.
        • Ariagno R.L.
        Development of fetal and neonatal sleep and circadian rhythms.
        Sleep Med. Rev. 2003; 7: 321-334
        • Clandinin M.T.
        • Chappell J.E.
        • Leong S.
        • Heim T.
        • Swyer P.R.
        • Chance G.W.
        Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements.
        Early Hum. Dev. 1980; 4: 121-129
        • Cheruku S.R.
        • Montgomery-Downs H.E.
        • Farkas S.L.
        • Thoman E.B.
        • Lammi-Keefe C.J.
        Higher maternal plasma docosahexaenoic acid during pregnancy is associated with more mature neonatal sleep-state patterning.
        Am. J. Clin. Nutr. 2002; 76: 608-613
        • Feldman R.
        The development of regulatory functions from birth to 5 years: insights from premature infants.
        Child Dev. 2009; 80: 544-561
        • Weisman O.
        • Magori-Cohen R.
        • Louzoun Y.
        • Eidelman A.I.
        • Feldman R.
        Sleep–wake transitions in premature neonates predict early development.
        Pediatrics. 2011; 128: 706-714
        • Porges S.W.
        • Furman S.A.
        The early development of the autonomic nervous system provides a neural platform for social behavior: a polyvagal perspective.
        Infant Child Dev. 2011; 20: 106-118
        • Langley-Evans S.C.
        Nutritional programming of disease: unravelling the mechanism.
        J. Anat. 2009; 215: 36-51
        • DiPietro J.A.
        • Kivlighan K.T.
        • Costigan K.A.
        • Rubin S.E.
        • Shiffler D.E.
        • Henderson J.L.
        • Pillion J.P.
        Prenatal antecedents of newborn neurological maturation.
        Child Dev. 2010; 81: 115-130
        • DiPietro J.A.
        • Hodgson D.M.
        • Costigan K.A.
        • Hilton S.C.
        • Johnson T.R.
        Development of fetal movement—fetal heart rate coupling from 20 weeks through term.
        Early Hum. Dev. 1996; 44: 139-151