Advertisement
Regular Article| Volume 65, ISSUE 1, P1-7, July 2001

Download started.

Ok

Plasma fatty acid levels in autistic children

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      Phospholipid fatty acids are major structural components of neuronal cell membranes, which modulate membrane fluidity and hence function. Evidence from clinical and biochemical sources have indicated changes in the metabolism of fatty acids in several psychiatric disorders. We examined the phospholipid fatty acids in the plasma of a population of autistic subjects compared to mentally retarded controls. Our results showed a marked reduction in the levels of 22: 6n-3 (23%) in the autistic subjects, resulting in significantly lower levels of total (n-3) polyunsaturated fatty acids (PUFA) (20%), without significant reduction in the (n-6) PUFA series, and consequently a significant increase in the (n-6)/(n-3) ratio (25%). These variations are discussed in terms of potential differences in PUFA dietary intake, metabolism, or incorporation into cellular membranes between the two groups of subjects. These results open up interesting perspectives for the investigation of new biological indices in autism. Moreover, this might have new therapeutic implications in terms of child nutrition.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      REFERENCES

        • Murphy M.G.
        Dietary fatty acids and membrane protein function.
        J Nutr Biochem. 1990; 1: 68-78
        • Bourre J.M.
        • Francois M.
        • Youyou A.
        • Dumont M.
        • Piciotti M.
        • Pascal G.
        The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats.
        J Nutr. 1989; 119: 1880-1892
        • Bennett C.N.
        • Horrobin D.F.
        Gene targets related to phospholipid and fatty acid metabolism in schizophrenia and other psychiatric disorder: an update.
        Prostaglandins, Leukotrienes and Essential Fatty Acids. 2000; 63: 47-59
        • Glen A.I.M.
        • Glen E.M.T.
        • Horrobin D.
        • Vaddadi K.S.
        • Spellman M.
        • Morse-Fisher N.
        A red cell membrane abnormality in a subgroup of schizophrenic patients: evidence for two diseases.
        Schizophr Res. 1994; 12: 53-61
        • Peet M.
        • Laugharne J.D.E.
        • Rangarajan N.
        • Horrobin D.
        • Reynolds G.
        Depleted red cell membrane essential fatty acids in drug-treated schizophrenic patients.
        J Psychiatry Res. 1995; 29: 227-232
        • Yao J.K.
        • Van Kammen D.P.
        • Welker J.A.
        Red blood cell membrane dynamics in schizophrenia. II. Fatty acid composition.
        Schizophr Res. 1994; 13: 216-226
        • Fenton W.S.
        • Hibbeln J.
        • Knable M.
        Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of Schizophrenia.
        Biol Psychiatry. 2000; 47: 8-21
        • Richardson A.J.
        • Ross M.A.
        Fatty acid metabolism in neurodevelopmental disorder: a new perspective on associations between attention-deficit/hyperactivity disorder, dyslexia, dyspraxia and the autistic spectrum.
        Prostaglandins, Leukotrienes and Essential Fatty Acids. 2000; 63: 1-9
      1. Diagnostic and Statistical Manual for Mental Disorders. American Psychiatric Press, Washington1994
        • Mitchell E.A.
        • Lewis S.
        • Cutler D.R.
        Essential fatty acids and maladjusted behavior in children.
        Prostaglandins Leukot Essent Fatty Acids. 1983; 12: 281-287
        • Mitchell E.A.
        • Aman M.G.
        • Turbott S.H.
        • Manku M.
        Clinical characteristics and serum essential fatty acid levels in hyperactive children.
        Clin Pedriatr. 1987; 26: 406-411
        • Stevens L.J.
        • Zentall S.S.
        • Deck J.L.
        • Abate M.L.
        • Watkins B.A.
        • Lipp S.R.
        Essential fatty acid metabolism in boys with attention-deficit hyperactivity disorder.
        Am J Clin Nutr. 1995; 62: 761-768
        • Burgess J.R.
        • Stevens L.
        • Zhang W.
        • Peck L.
        Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder.
        Am J Clin Nutr. 2000; 71: 327-330
        • Stevens L.J.
        • Zentall S.S.
        • Abate M.L.
        • Kuczek T.
        • Burgess J.R.
        Omega-3 fatty acids in boys with behavior, learning, and health problems.
        Physiol Behav. 1996; 59: 915-920
        • Aman M.G.
        • Mitchell E.A.
        • Turbott S.H.
        The effects of essential fatty acid supplementation by Efamol in hyperactive children.
        J Abnorm Child Psychol. 1987; 15: 75-90
        • Mellor J.E.
        • Laugharne J.D.E.
        • Peet M.
        Omega-3 fatty acid supplementation in schizophrenic patients.
        Human psychopharmacol. 1996; 11: 39-46
        • Peet M.
        • Laugharne J.D.E.
        • Mellor J.
        • Ramchand C.N.
        Essential fatty acid deficiency in erythrocyte membranes from chronic schizophrenic patients, and the clinical effects of dietary supplementation.
        Prostaglandins Leukot Essent Fatty Acids. 1996; 55: 71-75
        • Vaddadi K.S.
        • Courtney P.
        • Gilleard C.J.
        • Manku M.S.
        • Horrobin D.F.
        A double-blind trial of essential fatty acid supplementation in patients with tardive dyskinesia.
        Psychiatry Res. 1989; 27: 313-323
        • Stradomska T.J.
        • Tylki-Szymanska A.
        • Bentkowski Z.
        Very long-chain fatty acids in Rett syndrome.
        Eur J Pediatr. 1999; 158: 226-229
        • Burd L.
        • Kemp R.
        • Knull H.
        • Loveless D.
        A review of the biochemical pathways studied and abnormalities reported in the Rett syndrome.
        Brain Dev. 1990; 12: 444-448
      2. Diagnostic and Statistical Manual for Mental Disorders. American Psychiatric Press, Washington1987
        • Rapin I.
        • Katzman R.
        Neurobiology of autism.
        Ann Neurol. 1998; 43: 7-14
        • Martineau J.
        • Herault J.
        • Petit E.
        • Guerin P.
        • Hameury L.
        • Perrot A.
        Catecholaminergic metabolism and autism.
        Dev Med Child Neurol. 1994; 36: 688-697
        • Bligh E.G.
        • Dyer W.J.
        A rapid method of total lipid extraction and purification.
        Can J Biochem Physiol. 1959; 37: 911-917
        • Morrison W.R.
        Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron trifluoride methanol.
        J Lipid Res. 1964; 5: 600-615
        • Trottier G.
        • Srivastava L.
        • Walker C.D.
        Etiology of infantile autism: a review of recent advances in genetic and neurobiological research.
        J Psychiatry Neurosci. 1999; 24: 103-115
        • Chugani D.C.
        • Muzik O.
        • Behen M.
        • Rothermel R.
        • Janisse J.J.
        • Lee J.
        Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children.
        Ann Neurol. 1999; 45: 287-295
        • Herault J.
        • Petit E.
        • Martineau J.
        • Cherpi C.
        • Perrot A.
        • Barthelemy C.
        Serotonin and autism: biochemical and molecular biology features.
        Psychiatry Res. 1996; 65: 33-43
        • Cook Jr, E.H.
        • Courchesne R.
        • Lord C.
        • Cox N.J.
        • Yan S.
        • Lincoln A.
        Evidence of linkage between the serotonin transporter and autistic disorder.
        Mol Psychiatry. 1997; 2: 247-250
        • Michaelovsky E.
        • Frisch A.
        • Rockah R.
        • Peleg L.
        • Magal N.
        • Shohat M.
        novel allele in the promoter region of the human serotonin transporter gene.
        Mol Psychiatry. 1999; 4: 97-99
        • Cohen I.L.
        • Sudhalter V.
        • Pfadt A.
        • Jenkins E.C.
        • Brown W.T.
        • Vietze P.M.
        Why are autism and the fragile-X syndrome associated? Conceptual and methodological issues.
        Am J Hum Genet. 1991; 48: 195-202
        • Thomas N.S.
        • Sharp A.J.
        • Browne C.E.
        • Skuse D.
        • Hardie C.
        • Dennis N.R.
        Xp deletions associated with autism in three females.
        Hum Genet. 1999; 104: 43-48
        • Herault J.
        • Perrot A.
        • Barthelemy C.
        • Buchler M.
        • Cherpi C.
        • Leboyer M.
        Possible association of c-Harvey-Ras-1 (HRAS-I) marker with autism.
        Psychiatry Res. 1993; 46: 216-267
        • Herault J.
        • Petit E.
        • Martineau J.
        • Perrot A.
        • Lenoir P.
        • Cherpi C.
        Autism and genetics: clinical approach and association study with two markers of HRAS gene.
        Am J Med Genet. 1995; 14: 276-281
        • Horrobin D.F.
        • Manku M.S.
        • Hillman H.
        • Iain A.
        • Glen M.
        Fatty acid levels in brains of schizophrenics and normal controls.
        Biol Psychriatr. 1991; 30: 795-805
        • Clark T.
        • Feehan C.
        • Tinline C.
        • Vostanis P.
        Autistic symptoms in children with attention deficit-hyperactivity disorder.
        Eur Child Adolesc Psychiatry. 1999; 8: 50-55
        • Burr G.O.
        • Burr M.
        On the nature and role of the fatty acids essential in nutrition.
        J Biol Chem. 1930; 86: 587-621
        • Terai K.
        • Munesue T.
        • Hiratani M.
        Excessive water drinking behavior in autism.
        Brain Dev. 1999; 21: 103-106
        • Maes M.
        • Smith R.
        • Christophe A.
        • Cosyns P.
        • Desnyder R.
        • Meltzer H.
        Fatty acid composition in major depression: decreased w3 fractions in cholesteryl esters and increased C20 : 4ω 6/C20 : 5 ω 3 ratio in cholesteryl esters and phospholipids.
        J Affect Disord. 1996; 38: 35-46
        • Maes M.
        • Christophe A.
        • Delanghe J.
        • Altamura C.
        • Neels H.
        • Meltzer H.Y.
        Lowered ω 3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients.
        Psychiatry Res. 1999; 85: 275-291
        • Peet M.
        • Murphy B.
        • Shay J.
        • Horrobin D.
        Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients.
        Biol Psychiatry. 1998; 43: 315-319
        • Edwards R.H.
        • Peet M.
        • Shay J.
        • Horrobin D.
        Omega-3 polyunsaturated fatty acid levels in the diet and red blood cell membranes of depressed patients.
        J Affect Disord. 1998; 48: 149-155
        • Stoll A.L.
        • Locke C.A.
        • Marangell L.B.
        • Severus W.E.
        Omega-3 fatty acids and bipolar disorder: a review.
        Prostaglandins Leukot Essent Fatty Acids. 1999; 60: 329-337
        • Horrobin D.F.
        • Bennett C.N.
        New gene targets related to schizophrenia and other psychiatric disorders: enzymes, binding proteins and transport proteins involved in phospholipid and fatty acid metabolism.
        Prostaglandins Leukot Essent Fatty Acids. 1999; 60: 141-167
        • Horrobin D.F.
        The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia.
        Schizophr Res. 1998; 30: 193-208
        • Horrobin D.F.
        • Iain A.
        • Glen M.
        • Vaddadi K.
        The membrane hypothesis of schizophrenia.
        Schizophr Res. 1994; 13: 195-207
        • Gattaz W.F.
        • Köllish M.
        • Thuren T.
        • Virtanen J.A.
        • Kinnunen P.K.J.
        Increased plasma phospholipase A2 activity in schizoprenic patients: reduction after neuroleptic therapy.
        Biol Psychiatry. 1987; 22: 421-426
        • Gattaz W.F.
        • Hübner C.K.
        • Nevalainen T.J.
        • Thuren T.
        • Kinnunen P.K.J.
        Increased serum phospholipase A2 activity in schizophrenia: a replication study.
        Biol Psychiatry. 1990; 28: 495-501
        • Gattaz W.F.
        • Steudle A.
        • Maras A.
        Increased platelet phospholipase A2 activity in schizophrenia.
        Schizophr Res. 1995; 16: 1-6
        • Hudson C.J.
        • Lin A.
        • Horrobin D.F.
        Phospholipases: in search of a genetic base of schizophrenia.
        Prostaglandins Leukot Essent Fatty Acids. 1996; 55: 119-122
      3. Ramchand, C. N. Peet, M. A new genetic abnormality in the region of the phospholipase A2 gene in schizophrenic patients, 1998

        • Bolton P.
        • Powell J.
        • Rutter M.
        • Buckle V.
        • Yates J.R.
        • Ishikawa Brush Y.
        Autism, mental retardation, multiple exostoses and short stature in a female with 46, X, t(X; 8) (p22. 13; q22.1).
        Psychiatr Genet. 1995; 5: 51-55
        • Yao J.K.
        • Van Kammen D.P.
        • Gurklis J.A.
        Abnormal incorporation of arachidonic acid into platelets of drug-free patients with schizophrenia.
        Psychiatry Res. 1996; 60: 11-21
        • Decsi T.
        • Koletzko B.
        Fatty acid composition of plasma lipid classes in healthy subjects from birth to young adulthood.
        Eur J Pediatr. 1994; 153: 520-525
        • Moilanen T.
        Short-term biological reproductivity of serum fatty acid composition in children.
        Lipids. 1987; 22: 250-252