Advertisement
Research Article| Volume 70, ISSUE 3, P243-251, March 2004

Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry

      Abstract

      Ketone bodies become major body fuels during fasting and consumption of a high-fat, low-carbohydrate (ketogenic) diet. Hyperketonemia is associated with potential health benefits. Ketone body synthesis (ketogenesis) is the last recognizable step of lipid energy metabolism, a pathway that links dietary lipids and adipose triglycerides to the Krebs cycle and respiratory chain and has three highly regulated control points: (1) adipocyte lipolysis, (2) mitochondrial fatty acids entry, controlled by the inhibition of carnitine palmityl transferase I by malonyl coenzyme A (CoA) and (3) mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase, which catalyzes the irreversible first step of ketone body synthesis. Each step is suppressed by an elevated circulating insulin level or insulin/glucagon ratio. The utilization of ketone bodies (ketolysis) also determines circulating ketone body levels. Consideration of ketone body metabolism reveals the mechanisms underlying the extreme fragility of dietary ketosis to carbohydrate intake and highlights areas for further study.

      Keywords

      Abbreviations:

      3HB, 3-hydroxybutyrate (), AcAc, acetoacetate (), ACC, acetyl CoA carboxylase (), AcCoA, acetyl coenzyme A (), CoA, Coenzyme A (), HMG, 3-hydroxy-3-methylglutarate (), HL, HMG-CoA lyase (), MCD, malonyl CoA decarboxylase (), MHS, mitochondrial HMG-CoA synthase (), SCOT, Succinyl-CoA: 3-ketoacid CoA transferase (), T2, mitochondrial AcAcCoA thiolase ()
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Owen O.E.
        • Felig P.
        • Morgan A.P.
        • Wahren J.
        • Cahill Jr, G.F.
        Liver and kidney metabolism during prolonged starvation.
        J. Clin. Invest. 1969; 48: 574-583
        • Foster D.W.
        Diabetes mellitus.
        in: Wilson J.D. Braunwald E. Isselbacher K.J. Petersdorf R.G. Martin J.B. Fauci A.S. Root R.K. Harrison's Principles of Internal Medicine. McGraw-Hill, New York, NY1991: 1739-1759
        • Bonnefont J.P.
        • Specola N.B.
        • Vassault A.
        • Lombes A.
        • Ogier H.
        • de Klerk J.B.C.
        • et al.
        The fasting test in paediatrics.
        Eur. J. Pediatr. 1990; 150: 80-85
        • Cahill G.
        • Herrera M.G.
        • Morgan A.P.
        • Soeldner J.S.
        • Steinke J.
        • Levy P.L.
        • et al.
        Hormone-fuel interrelationships during fasting.
        J. Clin. Invest. 1966; 45: 1751-1769
        • Page M.M.
        • Alberti K.G.
        • Greenwood R.
        • Gumaa K.A.
        • Hockaday T.D.
        • Lowy C.
        • et al.
        Treatment of diabetic coma with continuous low-dose infusion of insulin.
        Br. Med. J. 1974; ii: 687-690
        • DeFronzo R.
        • Ferrannini E.
        Regulation of intermediary metabolism during fasting and feeding.
        in: DeGroot L.J. Jameson J.L. Endocrinology. W.B. Saunders, Philadelphia2001: 737-755
        • Polonsky K.S.
        • O’Meara N.M.
        Secretion and metabolism of insulin, proinsulin and C peptide.
        in: DeGroot L.J. Jameson J.L. Endocrinology. W.B.Saunders, Philadelphia2001: 697-711
        • Flatt J.P.
        On the maximal possible rate of ketogenesis.
        Diabetes. 1972; 21: 50-53
        • Garber A.J.
        • Menzel P.H.
        • Boden G.
        • Owen O.E.
        Hepatic ketogenesis and gluconeogenesis in humans.
        J. Clin. Invest. 1974; 54: 981-989
        • Reichard Jr., G.A.
        • Owen O.E.
        • Haff A.C.
        • Paul P.
        • Bortz W.M.
        Ketone-body production and oxidation in fasting obese humans.
        J. Clin. Invest. 1974; 53: 508-515
        • Mitchell G.A.
        • Fukao T.
        Inborn errors of ketone body metabolism.
        in: Scriver C.R. Beaudet A.L. Sly W.S. Valle D. The Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill, New York2001: 2327-2356
        • Des Rosiers C.
        • David F.
        • Garneau M.
        • Brunengraber H.
        Nonhomogeneous labeling of liver mitochondrial Acetyl-CoA.
        J. Biol. Chem. 1991; 266: 1574-1578
        • Williamson D.H.
        • Bates M.W.
        • Page M.A.
        • Krebs H.A.
        Activities of enzymes involved in acetoacetate utilization in adult mammalian tissues.
        Biochem. J. 1971; 121: 41-47
        • Balasse E.O.
        • Féry F.
        Ketone body production and disposal.
        Diabetes Metab. Rev. 1989; 5: 247-270
        • Hawkins R.A.
        • Williamson D.H.
        • Krebs H.A.
        Ketone-body utilization by adult and suckling rat brain in vivo.
        Biochem. J. 1971; 122: 13-18
        • Wick A.N.
        • Drury D.R.
        The effect of concentration on the rate of utilization of beta-hydroxybutyric acid by the rabbit.
        J. Biol. Chem. 1941; 138: 129-134
        • Williamson D.H.
        Ketone body production and metabolism in the fetus and newborn.
        in: Polin R.A. Fox W.W. Fetal and Neonatal Physiology. W.B. Saunders, Philadelphia1992: 330-340
        • Pardridge W.M.
        Blood-brain barrier transport of glucose, free fatty acids, and ketone bodies.
        in: Vranic M. Efendic S. Hollenberg C.H. Fuel Homeostasis and the Nervous System. Plenum Press, New York1991: 43-53
        • Owen O.E.
        • Morgan A.P.
        • Kemp H.G.
        • Sullivan J.M.
        • Herrera M.G.
        • Cahill G.F.J.
        Brain metabolism during fasting.
        J. Clin. Invest. 1967; 46: 1589-1595
        • Boukaftane Y.
        • Duncan A.
        • Wang S.
        • Labuda D.
        • Robert M.-F.
        • Sarrazin J.
        • et al.
        Human mitochondrial HMG CoA synthase (mHS).
        Genomics. 1994; 23: 552-559
        • Holm C.
        • Osterlund T.
        • Laurell H.
        • Contreras J.A.
        Molecular mechanisms regulating hormone-sensitive lipase and lipolysis.
        Annu. Rev. Nutr. 2000; 20: 365-393
        • Kraemer F.B.
        • Shen W.J.
        Hormone-sensitive lipase.
        J. Lipid. Res. 2002; 43: 1585-1594
        • Anthonsen M.W.
        • Rönnstrand L.
        • Wernstedt C.
        • Degerman E.
        • Holm C.
        Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro.
        J. Biol. Chem. 1998; 273: 215-221
        • Greenberg A.S.
        • Shen W.J.
        • Muliro K.
        • Patel S.
        • Souza S.C.
        • Roth R.A.
        • et al.
        Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway.
        J. Biol. Chem. 2001; 276: 45456-45461
        • Garton A.J.
        • Campbell D.G.
        • Carling D.
        • Hardie D.G.
        • Colbran R.J.
        • Yeaman S.J.
        Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. A possible antilipolytic mechanism.
        Eur. J. Biochem. 1989; 179: 249-254
        • Degerman E.
        • Belfrage P.
        • Manganiello V.C.
        Structure, Localization, and Regulation of cGMP-inhibited phosphodiesterase (PDE3).
        J. Biol. Chem. 1997; 272: 6823-6826
        • Shen W.J.
        • Liang Y.
        • Hong R.
        • Patel S.
        • Natu V.
        • Sridhar K.
        • et al.
        Characterization of the functional interaction of adipocyte lipid-binding protein with hormone-sensitive lipase.
        J. Biol. Chem. 2001; 276: 49443-49448
        • Egan J.J.
        • Greenberg A.S.
        • Chang M.K.
        • Wek S.A.
        • Moos Jr., M.C.
        • Londos C.
        Mechanism of hormone-stimulated lipolysis in adipocytes.
        Proc. Natl. Acad. Sci. (USA). 1992; 89: 8537-8541
        • Osuga J.I.
        • Ishibashi S.
        • Oka T.
        • Yagyu H.
        • Tozawa R.
        • Fujimoto A.
        • et al.
        Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity.
        PNAS. 2000; 97: 787-792
        • Wang S.P.
        • Laurin N.
        • Himms-Hagen J.
        • Rudnicki M.A.
        • Levy E.
        • Robert M.F.
        • et al.
        The adipose tissue phenotype of hormone-sensitive lipase deficiency in mice.
        Obes. Res. 2001; 9: 119-128
        • Haemmerle G.
        • Zimmermann R.
        • Hayn M.
        • Theussl C.
        • Waeg G.
        • Wagner E.
        • et al.
        Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis.
        J. Biol. Chem. 2002; 277: 4806-4815
        • Tansey J.T.
        • Sztalryd C.
        • Gruia-Gray J.
        • Roush D.L.
        • Zee J.V.
        • Gavrilova O.
        • et al.
        Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity.
        Proc. Natl. Acad. Sci. USA. 2001; 98: 6494-6499
        • Martinez-Botas J.
        • Anderson J.
        • Tessier D.
        • Lapillonne A.
        • Chang B.H.
        • Quast J.J.
        • et al.
        Absence of perilipin results in leanness and reverses obesity in Lepr(db/db) mice.
        Nat. Genet. 2000; 26: 474-479
        • McGarry J.D.
        • Brown N.F.
        The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis.
        Eur. J. Biochem. 1997; 244: 1-14
        • McGarry J.D.
        • Foster D.W.
        Regulation of hepatic fatty acid oxidation and ketone body production.
        Annu. Rev. Biochem. 1980; 49: 395-420
        • Kerner J.
        • Hoppel C.L.
        Genetic disorders of carnitine metabolism and their nutritional management.
        Annu. Rev. Nutr. 1998; 18: 179-206
        • Nicot C.
        • Hegardt F.G.
        • Woldegiorgis G.
        • Haro D.
        • Marrero P.F.
        Pig liver carnitine palmitoyltransferase I, with low Km for carnitine and high sensitivity to malonyl-CoA inhibition, is a natural chimera of rat liver and muscle enzymes?.
        Biochemistry. 2001; 40: 2260-2266
        • Fraser F.
        • Zammit V.A.
        Enrichment of carnitine palmitoyltransferases I and II in the contact sites of rat liver mitochondria.
        Biochem. J. 1998; 329: 225-229
        • Fraser F.
        • Corstorphine C.G.
        • Zammit V.A.
        Evidence that both the acyl-CoA and malonyl-CoA binding sites of mitochondrial overt carnitine palmitoyltransferase (CPT I) are exposed on the cytosolic face of the outer membrane.
        Biochem. Soc. Trans. 1996; 24: 184S
        • Fraser F.
        • Corstorphine C.G.
        • Zammit V.A.
        Topology of carnitine palmitoyltransferase I in the mitochondrial outer membrane.
        Biochem. J. 1997; 323: 711-718
        • Zammit V.A.
        • Fraser F.
        • Corstorphine C.G.
        Regulation of mitochondrial outer-membrane carnitine palmitoyltransferase (CPT I).
        Adv. Enzyme Regul. 1997; 37: 297-317
        • Shi J.
        • Zhu H.
        • Arvidson D.
        • Woldegiorgis G.
        The first 28 N-terminal amino acid residues of human heart muscle carnitine palmitoyltransferase I are essential for malonyl CoA sensitivity and high-affinity binding.
        Biochemistry. 2000; 39: 712-717
        • Merrill G.F.
        • Kurth E.J.
        • Hardie D.G.
        • Winder W.W.
        AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle.
        Am. J. Physiol. 1997; 273: E1107-E1112
        • Saha A.K.
        • Schwarsin A.J.
        • Roduit R.
        • Masse F.
        • Kaushik V.
        • Tornheim K.
        • et al.
        Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-beta -D-ribofuranoside.
        J. Biol. Chem. 2000; 275: 24279-24283
        • Kudo N.
        • Barr A.J.
        • Barr R.L.
        • Desai S.
        • Lopaschuk G.D.
        High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase.
        J. Biol. Chem. 1995; 270: 17513-17520
        • Abu-Elheiga l.
        • Matzuk M.M.
        • Abo-Hashema K.A.
        • Wakil S.J.
        Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2.
        Science. 2001; 291: 2613-2616
        • Hardie D.G.
        • Carling D.
        The AMP-activated protein kinase—fuel gauge of the mammalian cell?.
        Eur. J. Biochem. 1997; 246: 259-273
        • Witters L.A.
        • Kemp B.E.
        Insulin activation of acetyl-CoA carboxylase accompanied by inhibition of the 5′-AMP-activated protein kinase.
        J. Biol. Chem. 1992; 267: 2864-2867
        • Park S.H.
        • Gammon S.R.
        • Knippers J.D.
        • Paulsen S.R.
        • Rubink D.S.
        • Winder W.W.
        Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle.
        J. Appl. Physiol. 2002; 92: 2475-2482
        • Alam N.
        • Saggerson E.D.
        Malonyl-CoA and the regulation of fatty acid oxidation in soleus muscle.
        Biochem. J. 1998; 334: 233-241
        • Dyck J.R.
        • Barr A.J.
        • Barr R.L.
        • Kolattukudy P.E.
        • Lopaschuk G.D.
        Characterization of cardiac malonyl-CoA decarboxylase and its putative role in regulating fatty acid oxidation.
        Am. J. Physiol. 1998; 275: H2122-H2129
        • Ruderman N.B.
        • Saha A.K.
        • Vavvas D.
        • Witters L.A.
        Malonyl-CoA, fuel sensing, and insulin resistance.
        Am. J. Physiol. 1999; 276: E1-E18
        • Dyck J.R.
        • Berthiaume L.G.
        • Thomas P.D.
        • Kantor P.F.
        • Barr A.J.
        • Barr R.L.
        • et al.
        Characterization of rat liver malonyl-CoA decarboxylase and the study of its role in regulating fatty acid metabolism.
        Biochem. J. 2000; 350: 459-608
        • Békési A.W.
        • Williamson D.H.
        An explanation for ketogenesis by the intestine of the suckling rat.
        Biol. Neonat. 1990; 58: 160-165
        • Cullingford T.E.
        • Dolphin C.T.
        • Bhakoo K.K.
        • Peuchen S.
        • Canevari L.
        • Clark J.B.
        Molecular cloning of rat mitochondrial 3-hydroxy-3-methylglutaryl-CoA lyase and detection of the corresponding mRNA and of those encoding the remaining enzymes comprising the ketogenic 3-hydroxy-3-methylglutaryl-CoA cycle in central nervous system of suckling rat.
        Biochem. J. 1998; 329: 373-381
      1. T. Cullingford, Molecular regulation of ketone body synthesis. Prostaglandins Leukot Essent Fatty Acids (2004) this issue, doi:10.1016/j.plefa.2003.09.008.

        • Williamson D.H.
        • Bates M.W.
        • Krebs H.A.
        Activity and intracellular distribution of enzymes of ketone-body metabolism in rat liver.
        Biochem. J. 1968; 108: 353-361
        • Casals N.
        • Roca N.
        • Guerrero M.
        • Gil-Gomez G.
        • Ayté J.
        • Ciudad C.J.
        • et al.
        Regulation of the expression of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene. Its role in the control of ketogenesis.
        Biochem. J. 1992; 283: 261-264
        • Hegardt F.G.
        Regulation of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene expression in liver and intestine from the rat.
        Biochem. Soc. Trans. 1995; 23: 486-490
        • Thumelin S.
        • Forestier M.
        • Girard J.
        • Pegorier J.P.
        Developmental changes in mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene expression in rat liver, intestine and kidney.
        Biochem. J. 1993; 292: 493-496
        • Arias G.
        • Asins G.
        • Hegardt F.G.
        • Serra D.
        The effect of fasting/refeeding and insulin treatment on the expression of the regulatory genes of ketogenesis in intestine and liver of suckling rats.
        Arch. Biochem. Biophys. 1997; 340: 287-298
        • Serra D.
        • Casals N.
        • Asins G.
        • Royo T.
        • Ciudad C.J.
        • Hegardt F.G.
        Regulation of mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase protein by starvation, fat feeding, and diabetes.
        Arch. Biochem. Biophys. 1993; 307: 40-45
        • Meertens L.M.
        • Miyata K.S.
        • Cechetto J.D.
        • Rachubinski R.A.
        • Capone J.P.
        A mitochondrial ketogenic enzyme regulates its gene expression by association with the nuclear hormone receptor PPARα.
        EMBO. J. 1998; 17: 6972-6978
        • Lowe D.M.
        • Tubbs P.K.
        3-hydroxy-3-methylglutaryl-coenzyme A synthase from ox liver. Purification, molecular and catalytic properties.
        Biochem. J. 1985; 227: 591-599
        • Miziorko H.M.
        • Lane M.D.
        3-Hydroxy-3-methylglutaryl-CoA synthase. Participation of acetyl-S-enzyme and enzyme-S-hydroxymethylglutaryl-SCoA intermediates in the reaction.
        J. Biol. Chem. 1977; 252: 1414-1420
        • Lowe D.M.
        • Tubbs P.K.
        Succinylation and inactivation of 3-hydroxy-3-methylglutaryl-CoA synthase by succinyl-CoA and its possible relevance to the control of ketogenesis.
        Biochem. J. 1985; 232: 37-42
        • Hipolito-Reis C.
        • Bailey E.
        • Bartley W.
        Factors involved in the control of the activity of enzymes of hepatic ketogenesis during development of the rat.
        Int. J. Biochem. 1974; 5: 31-39
        • Ashmarina L.I.
        • Rusnak N.
        • Miziorko H.M.
        • Mitchell G.A.
        3-Hydroxy-3-methylglutaryl-CoA lyase is present in mouse and human liver peroxisomes.
        J. Biol. Chem. 1994; 269: 31929-31932
        • Fraser F.
        • Corstorphine C.G.
        • Price N.T.
        • Zammit V.A.
        Evidence that carnitine palmitoyltransferase I (CPT I) is expressed in microsomes and peroxisomes of rat liver. Distinct immunoreactivity of the N-terminal domain of the microsomal protein.
        FEBS Lett. 1999; 446: 69-74
        • Fukao T.
        • Song X.-Q.
        • Mitchell G.A.
        • Yamaguchi S.
        • Sukegawa K.
        • Hashimoto T.
        • et al.
        Enzymes of ketone body utilization in humans: protein levels and gene expression in multiple tissues of succinyl-CoA.
        Pediatr. Res. 1997; 42: 498-502
        • Fenselau A.
        • Wallis K.
        Ketone body usage by mammals. Acetoacetate substrate inhibition of CoA transferase from various rat tissues.
        Life. Sci. 1974; 15: 811-818
        • Page M.A.
        • Williamson D.H.
        Enzymes of ketone-body utilisation in human brain.
        Lancet. 1971; 2: 66-68
        • Turko I.V.
        • Marcondes S.
        • Murad F.
        Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA.
        Am. J. Physiol. Heart. Circ. Physiol. 2001; 281: H2289-H2294
        • Marcondes S.
        • Turko I.V.
        • Murad F.
        Nitration of succinyl-CoA.
        Proc. Natl. Acad. Sci. (USA). 2001; 98: 7146-7151
        • Fink G.
        • Desrochers S.
        • Des Rosiers C.
        • Garneau M.
        • David F.
        • Daloze T.
        • et al.
        Pseudoketogenesis in the perfused rat heart.
        J. Biol. Chem. 1988; 263: 18036-18042
        • Weidemann M.J.
        • Krebs H.A.
        The fuel of respiration of rat kidney cortex.
        Biochem. J. 1969; 112: 149-166
        • Williamson J.R.
        • Krebs H.A.
        Acetoacetate as fuel of respiration in the perfused rate heart.
        Biochem. J. 1961; 80: 540-547
        • Karlsson M.
        • Contreras J.A.
        • Hellman U.
        • Tornqvist H.
        • Holm C.
        cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxides.
        J. Biol. Chem. 1997; 272: 27218-27223