Advertisement

Ketone body synthesis in the brain: possible neuroprotective effects

      Abstract

      Ketone bodies make an important contribution to brain energy production and biosynthetic processes when glucose becomes scarce. Although it is generally assumed that the liver supplies the brain with ketone bodies, recent evidence shows that cultured astrocytes are also ketogenic cells. Moreover, astrocyte ketogenesis might participate in the control of the survival/death decision of neural cells in at least two manners: first, by scavenging non-esterified fatty acids the ketogenic pathway would prevent the detrimental actions of these compounds and their derivatives (e.g. ceramide) on brain structure and function. Second, ketone bodies may exert pro-survival actions per se by acting as cellular substrates, thereby preserving neuronal synaptic function and structural stability. These findings support the notion that ketone bodies produced by astrocytes may be used in situ as substrates for neuronal metabolism, and raise the possibility that astrocyte ketogenesis is a neuroprotective pathway.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Clarke D.D.
        • Sokoloff L.
        Circulation and energy metabolism of the brain.
        in: Siegel G.J. Agranoff B.W. Albers R.W. Fisher S.K. Uhler M.D. Basic Neurochemistry. 6th Edition. Lippincott, Williams & Wilkins, Philadelphia1999: 637-669
        • Robinson A.M.
        • Williamson D.H.
        Physiological roles of ketone bodies as substrates and signals in mammalian tissues.
        Physiol. Rev. 1980; 60: 143-187
        • Edmond J.
        • Auestad N.
        • Robbins R.A.
        • Bergstrom J.D.
        Ketone body metabolism in the neonate.
        Fed. Proc. 1985; 44: 2359-2364
        • Tsacopoulos M.
        • Magistretti P.J.
        Metabolic coupling between glia and neurons.
        J. Neurosci. 1996; 16: 877-885
        • Deitmer J.W.
        Glial strategy for metabolic shuttling and neuronal function.
        BioEssays. 2000; 22: 747-752
        • Dienel G.A.
        • Hertz L.
        Glucose and lactate metabolism during brain activation.
        J. Neurosci. Res. 2001; 66: 824-838
        • Auestad N.
        • Korsak R.A.
        • Morrow J.W.
        • Edmond J.
        Fatty acid oxidation and ketogenesis by astrocytes in primary culture.
        J. Neurochem. 1991; 56: 1376-1386
        • Bixel M.G.
        • Hamprecht B.
        Generation of ketone bodies from leucine by cultured astroglial cells.
        J. Neurochem. 1995; 65: 2450-2461
        • Guzmán M.
        • Blázquez C.
        Is there an astrocyte-neuron ketone body shuttle?.
        Trends Endocrinol. Metab. 2001; 12: 169-173
        • McGarry J.D.
        • Foster D.W.
        Regulation of hepatic fatty acid oxidation and ketone body production.
        Annu. Rev. Biochem. 1980; 49: 395-420
        • Edmond J.
        • Robbins R.A.
        • Bergstrom J.D.
        • Cole R.A.
        • de Vellis J.
        Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture.
        J. Neurosci. Res. 1987; 18: 551-561
        • Blázquez C.
        • Sánchez C.
        • Velasco G.
        • Guzmán M.
        Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes.
        J. Neurochem. 1998; 71: 1597-1606
        • Drynan L.
        • Quant P.A.
        • Zammit V.A.
        Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over β-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states.
        Biochem. J. 1996; 317: 791-795
        • Spurway T.
        • Sherrat H.S.A.
        • Pogson C.I.
        • Agius L.
        The flux control coefficient of carnitine palmitoyltransferase I on palmitate β-oxidation in rat hepatocyte cultures.
        Biochem. J. 1997; 323: 119-122
        • Hegardt F.G.
        Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase.
        Biochem. J. 1999; 338: 569-582
        • Cullingford T.E.
        • Dolphin C.T.
        • Bhakoo K.K.
        • Peuchen S.
        • Canevari L.
        • Clark J.B.
        Molecular cloning of rat mitochondrial 3-hydroxy-3-methylglutaryl-CoA lyase and detection of the corresponding mRNA and of those encoding the remaining enzymes comprising the ketogenic 3-hydroxy-3-methylglutaryl-CoA cycle in central nervous system of suckling rats.
        Biochem. J. 1998; 329: 373-381
        • Cullingford T.E.
        • Bhakoo K.K.
        • Clark J.B.
        Hormonal regulation of the mRNA encoding the ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in neonatal primary cultures of cortical astrocytes and meningeal fibroblasts.
        J. Neurochem. 1998; 71: 1804-1812
        • McGarry J.D.
        • Brown N.F.
        The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis.
        Eur. J. Biochem. 1997; 244: 1-14
        • Brownsey R.W.
        • Zhande R.
        • Boone A.N.
        Isoforms of acetyl-CoA carboxylase.
        Biochem. Soc. Trans. 1997; 25: 1232-1238
        • Lopes-Cardozo M.
        • Larson O.M.
        • Schousboe A.
        Acetoacetate and glucose as lipid precursors and energy substrates in primary cultures of astrocytes and neurons from mouse cerebral cortex.
        J. Neurochem. 1986; 46: 773-778
        • LaDu M.J.
        • Reardon C.
        • van Eldik L.
        • Fagan A.M.
        • Bu G.
        • Hu J.
        • Guo L.
        • van Eldik L.J.
        Lipoproteins in the central nervous system.
        Ann. N. Y. Acad. Sci. 2000; 903: 167-175
        • Cullingford T.E.
        • Bhakoo K.
        • Peuchen S.
        • Dolphin C.T.
        • Patel R.
        • Clark J.B.
        Distribution of mRNAs encoding the peroxisome proliferator-activated receptor α, β and γ and the retinoic X receptor α, β and γ in rat central nervous system.
        J. Neurochem. 1998; 70: 1366-1375
        • Cullingford T.E.
        • Dolphin C.T.
        • Sato H.
        The peroxisome proliferator-activated receptor α-selective activator ciprofibrate upregulates expression of genes encoding fatty acid oxidation and ketogenesis enzymes in rat brain.
        Neuropharmacology. 2002; 42: 724-730
        • Hansson E.
        • Rönnbäck L.
        Glial neuronal signaling in the central nervous system.
        FASEB J. 2003; 17: 341-348
        • Porter J.T.
        • McCarthy K.D.
        Astrocytic neurotransmitter receptors in situ and in vivo.
        Prog. Neurobiol. 1997; 51: 439-455
        • Pellerin L.
        • Stolz M.
        • Sorg O.
        • Martin J.C.
        • Deschepper C.F.
        • Magistretti P.J.
        Regulation of energy metabolism by neurotransmitters in astrocytes in primary culture and in an immortalized cell line.
        Glia. 1997; 21: 74-83
        • Pellerin L.
        • Pellegri G.
        • Bittar P.G.
        • Charnay Y.
        • Bouras C.
        • Martin J.L.
        • Stella N.
        • Magistretti P.J.
        Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle.
        Dev. Neurosci. 1998; 20: 291-299
        • Sánchez C.
        • Galve-Roperh I.
        • Rueda D.
        • Guzmán M.
        Involvement of sphingomyelin hydrolysis and the mitogen-activated protein kinase cascade in the Δ9-tetrahydrocannabinol-induced stimulation of glucose metabolism in primary astrocytes.
        Mol. Pharmacol. 1998; 54: 834-843
        • Blázquez C.
        • Sánchez C.
        • Daza A.
        • Galve-Roperh I.
        • Guzmán M.
        The stimulation of ketogenesis by cannabinoids in cultured astrocytes defines carnitine palmitoyltransferase I as a new ceramide-activated enzyme.
        J. Neurochem. 1999; 72: 1759-1768
        • Schurr A.
        • Rigor B.M.
        Brain anaerobic lactate production.
        Dev. Neurosci. 1998; 20: 348-357
        • Blázquez C.
        • Woods A.
        • de Ceballos M.L.
        • Carling D.
        • Guzmán M.
        The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes.
        J. Neurochem. 1999; 73: 1674-1682
        • Hardie D.G.
        • Hawley S.A.
        AMP-activated protein kinase.
        BioEssays. 2001; 23: 1112-1119
        • Turnley A.M.
        • Stapleton D.
        • Mann R.J.
        • Witters L.A.
        • Kemp B.E.
        • Bartlett P.F.
        Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system.
        J. Neurochem. 1999; 72: 1707-1716
        • Bazan N.G.
        Effects of ischemia and electroconvulsive shock on free fatty acid pool in brain.
        Biochim. Biophys. Acta. 1970; 218: 1-10
        • Bazan N.G.
        Changes in free fatty acids of brain by drug-induced convulsions, electroshock and anaesthesia.
        J. Neurochem. 1971; 18: 1379-1385
        • Bazan N.G.
        • Rodriguez de Turco E.B.
        • Allan G.
        Mediators of injury in neurotrauma.
        J. Neurotrauma. 1995; 12: 791-814
        • Paumen M.B.
        • Ishida Y.
        • Muramatsu M.
        • Yamamoto M.
        • Honjo T.
        Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis.
        J. Biol. Chem. 1997; 272: 3324-3329
        • Merrill A.H.
        De novo sphingolipid biosynthesis.
        J. Biol. Chem. 2002; 277: 25843-25846
        • Blázquez C.
        • Galve-Roperh I.
        • Guzmán M.
        De novo-synthesized ceramide signals apoptosis in astrocytes via extracellular signal-regulated kinase.
        FASEB J. 2000; 14: 2315-2322
        • Xu J.
        • Yeh C.H.
        • Chen S.
        • He L.
        • Sensi S.L.
        • Canzoniero L.M.T.
        • Choi D.W.
        • Hsu C.Y.
        Involvement of de novo ceramide biosynthesis in tumor necrosis factor-α/cycloheximide-induced cerebral endothelial cell death.
        J. Biol. Chem. 1998; 273: 16521-16526
        • Galve-Roperh I.
        • Sánchez C.
        • Cortés M.
        • Gómez del Pulgar T.
        • Izquierdo M.
        • Guzmán M.
        Anti-tumoral action of cannabinoids.
        Nat. Med. 2000; 6: 313-319
        • Herget T.
        • Esdar C.
        • Oehrlein S.A.
        • Heinrich M.
        • Schutze S.
        • Maelicke A.
        • van Echten-Deckert G.
        Production of ceramides causes apoptosis during early neural differentiation in vitro.
        J. Biol. Chem. 2000; 275: 30344-30354
        • Blázquez C.
        • Geelen M.J.H.
        • Velasco G.
        • Guzmán M.
        The AMP-activated protein kinase prevents ceramide synthesis de novo and apoptosis in astrocytes.
        FEBS Lett. 2001; 489: 149-153
        • Izumi Y.
        • Benz A.M.
        • Katsuki H.
        • Zorumski C.F.
        Endogenous monocarboxylates sustain hippocampal synaptic function and morphological integrity during energy deprivation.
        J. Neurosci. 1997; 17: 9448-9457
        • Izumi Y.
        • Ishii K.
        • Katsuki H.
        • Benz A.M.
        • Zorumski C.F.
        Beta-hydroxybutyrate fuels synaptic function during development. Histological and physiological evidence in rat hippocampal slices.
        J. Clin. Invest. 1998; 101: 1121-1132
        • Wada H.
        • Okada Y.
        • Nabetani M.
        • Nakamura H.
        The effects of lactate and beta-hydroxybutyrate on the energy metabolism and neural activity of hippocampal slices from adult and immature rat.
        Brain Res. Dev. Brain Res. 1997; 101: 1-7
        • Maus M.
        • Marin P.
        • Israel M.
        • Glowinski J.
        • Premont J.
        Pyruvate and lactate protect striatal neurons against N-methyl-d-aspartate-induced neurotoxicity.
        Eur. J. Neurosci. 1999; 11: 3215-3224
        • Kashiwaya Y.
        • Takeshima T.
        • Mori N.
        • Nakashima K.
        • Clarke K.
        • Veech R.L
        d-β-hydroxybutyrate protects neurons in models of Alzheimer's and Parkinson's disease.
        Proc. Natl. Acad. Sci. USA. 2000; 97: 5440-5444
        • Arakawa T.
        • Goto T.
        • Okada Y.
        Effect of ketone body (d-3-hydroxybutyrate) on neural activity and energy metabolism in hippocampal slices of the adult guinea pig.
        Neurosci. Lett. 1991; 130: 53-56
        • Massieu L.
        • Del Rio P.
        • Montiel T.
        Neurotoxicity of glutamate uptake inhibition in vivo.
        Neuroscience. 2001; 106: 669-677
        • Brown A.M.
        • Wender R.
        • Ramsom B.R.
        Metabolic substrates other than glucose support axon function in central white matter.
        J. Neurosci. Res. 2001; 66: 839-843
        • Pope A.
        Neuroglia.
        in: Schoffeniels E. Tower F.G. Dynamic Properties of Glial Cells: An Interdisciplinary Approach to Their Study in the Central and Peripheral Nervous System. Pergamon Press, Oxford, New York1978: 13-20
        • Go K.G.
        • Prenen G.
        • Korf J.
        Protective effect of fasting upon cerebral hypoxic–ischemic injury.
        Metab. Brain Dis. 1988; 3: 257-263
        • Marie C.
        • Bralet A.M.
        • Gueldry S.
        • Bralet J.
        Fasting prior to transient cerebral ischemia reduces delayed neuronal necrosis.
        Metab. Brain Dis. 1990; 5: 65-75
        • Yager J.Y.
        • Heitjan D.F.
        • Towfighi J.
        • Vanucci R.C.
        Effect of insulin-induced and fasting hypoglucemia on perinatal hypoxic–ischemic brain damage.
        Pediatr. Res. 1992; 31: 138-142
        • Mattson M.P.
        • Chan S.L.
        • Duan W.
        Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior.
        Physiol. Rev. 2002; 82: 637-672
        • Eiger S.M.
        • Kirsch J.R.
        • D’Alecy L.G.
        Hypoxic tolerance enhanced by beta-hydroxybutyrate-glucagon in the mouse.
        Stroke. 1980; 11: 513-517
        • Holowach-Thurston J.H.R.
        Ketonemia increases survival of young mice in anoxic as well as hypoxic environments.
        Pediatr. Res. 1989; 25: 326A
        • Suzuki M.
        • Sato K.
        • Dohi S.
        • Sato T.
        • Matsuura A.
        • Hiraide A.
        Effect of beta-hydroxybutyrate, a cerebral function improving agent, on cerebral hypoxia, anoxia and ischemia in mice and rats.
        Jpn. J. Pharmacol. 2001; 87: 143-150
        • Suzuki M.
        • Kitamura Y.
        • Mori S.
        • Sato K.
        • Dohi S.
        • Sato T.
        • Matsuura A.
        • Hiraide A.
        Beta-hydroxybutyrate, a cerebral function improving agent, protects rat brain against ischemic damage caused by permanent and transient focal cerebral ischemia.
        Jpn. J. Pharmacol. 2002; 89: 36-43
        • Lundy E.F.
        • Dykstra J.
        • Luyckx B.
        • Zelenock G.B.
        • D’Alecy L.G.
        Reduction of neurologic deficit by 1,3-butanediol induced ketosis in Levine rats.
        Stroke. 1985; 16: 855-860
        • Gueldry S.
        • Marie C.
        • Rochette L.
        • Bralet J.
        Beneficial effect of 1,3-butanediol on cerebral energy metabolism and edema following brain embolization in rats.
        Stroke. 1990; 21: 1458-1463
        • Vining E.P.G.
        Clinical efficacy of the ketogenic diet.
        Epilepsy Res. 1999; 37: 181-190
        • Cullingford T.E.
        • Eagles D.A.
        • Sato H.
        The ketogenic diet upregulates expression of the gene encoding the key ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in rat brain.
        Epilepsy Res. 2002; 49: 99-107
        • Likhodii S.S.
        • Musa K.
        • Mendonca A.
        • Dell C.
        • Burnham W.M.
        • Cunnane S.C.
        Dietary fat, ketosis, and seizure resistance in rats on the ketogenic diet.
        Epilepsia. 2000; 41: 1400-1410
        • Thio L.L.
        • Wong M.
        • Yamada K.A.
        Ketone bodies do not directly alter excitatory or inhibitory hippocampal synapic transmission.
        Neurology. 2000; 54: 325-331