Advertisement
Research Article| Volume 71, ISSUE 6, P383-389, December 2004

Vitamin A deficiency reduces liver and colon docosahexaenoic acid levels in rats fed high linoleic and low alpha-linolenic acid diet

Published:October 11, 2004DOI:https://doi.org/10.1016/j.plefa.2004.07.005

      Abstract

      Studies indicate that the transcription factor peroxisome proliferator-activated receptors (PPARs) regulate the activity of delta-6 and -5 desaturases and several key enzymes of peroxisomal β-oxidation, including acyl-CoA oxidase. These enzymes are vital for the synthesis of docosahexaenoic (22:6ω3; DHA) and osbond (22:5ω6, OA) acids. An activated PPAR must form a hetrodimer with the obligate cofactor retinoid X receptor (RXR) to interact with a peroxisome proliferator responsive element (PPRE) of a target gene and to regulate transcriptional expression. The vitamin A metabolite, 9-cis retinoic acid, is the most potent ligand of RXR. We have tested the possibility that deficiency of vitamin A would compromise tissue levels of both DHA and OA in rats. Two groups of male Wistar rats were randomly distributed to receive vitamin A deficient (VAD) or sufficient (VAS) diet. After seven weeks of feeding, the rats were killed and colon and liver tissues removed for the analysis of fatty acids and antioxidant status. The VAD compared to the VAS rats had elevated levels of arachidonic (AA, P<0.001), adrenic acid (22:4ω6, P<0.005) and OA (P<0.0001) and reduced proportions of eicosapentaenoic (EPA, docosapentaenoic (DPA), DHA and total ω3 fatty (P<0.0001) in colon choline phosphoglycerides (CPG). Similarly, liver CPG of the VAD rats had higher AA and adrenic acid and OA (P<0.0001), and lower EPA, DPA and DHA (P<0.0001) than the VAS rats. There was a similar fatty acid pattern in ethanolamine phosphoglycerides of the colon and liver tissues. These differences could not be explained by the conventional microsomal-peroxisomal pathway of the synthesis of the long-chain ω6 and ω3 polyunsaturated fatty acids. We postulate that deficiency of dietary vitamin A and the consequential depletion of retinoids inhibits DHA, and enhances OA, synthesis by differential effects on the independent synthetic pathways of the two fatty acids in the mitochondria. Various studies have documented that both DHA and vitamin A are vital for optimal visual and neural development and function. There is a need for further investigations to elucidate how vitamin A deficiency reduces membrane DHA level, and to delineate the synergistic effect of the two nutrients on vision, learning and memory.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Svennerholm L.
        Distribution and fatty acid composition of phosphoglycerides in normal human brain.
        J. Lipid Res. 1968; 9: 570-579
        • Fliesler S.J.
        • Anderson R.E.
        Chemistry and metabolism of lipids in the vertebrate retina.
        Prog. Lipid Res. 1983; 22: 79-131
        • Sastry P.S.
        Lipids of nervous tissue. 1985; 24: 69-176
        • Loh H.H.
        • Law P.Y.
        The role of membrane lipids in receptor mechanisms.
        Ann. Rev. Pharmacol. Toxicol. 1980; 20: 201-234
        • Salem Jr., N.
        • Kim H.-Y.
        • Yergey J.A.
        Docosahexaenoic acid.
        in: Simopoulos A.P. Kifer R.R. Maritn R.E. Health Effects of Polyunsaturated Fatty Acids in Seafoods. Academic Press, Orlando, Florida1986: 263-317
        • Bazan N.G.
        Supply of n-3 polyunsaturated fatty acids and their significance in the central nervous system.
        in: Wurtman R.J. Wurtman J. Nutrition and the Brain. Raven Press, New York1990: 1-24
      1. R.E. Anderson, P.J. O’Brien, R.D. Weigand, C.A. Koutz, A.M. Stinson, Conservation of docosahexaenoic acid in the retina, in: N.G. Bazan, M. G. Murpy, G. Toffano (Eds.), Neurobiology of Essential Fatty Acids. Adv. Exp. Med. Biol., 18 (1992) 285–306.

        • Jones C.R.
        • Arai T.
        • Rapoport S.I.
        Evidence for the involvement of docosahexaenoic acid in cholinergic stimulated signal transduction at the synapse. Neurochem. Res. 1997; 22: 663-670
        • Xiao Y.F.
        • Gomez A.M.
        • Moragan J.P.
        • Lederer W.J.
        • Leaf A.
        Suppression of voltage-gated L-type Ca currents by polyunsaturated fatty acids in adult and neonatal ret ventricular myocytes..
        Proc. Natl. Sci. USA. 1997; 94: 4182-4187
        • Voss A.M.
        • Reinhart S.
        • Sankarappa S.
        • Sprecher H.
        The metabolism of 7, 10, 13, 16, 19-docosahexapentaenoic acid to 4, 7, 10, 13, 16, 19-docosahexaenoic acid in rat liver is independent of a 4-desaturase.
        J. Biol. Chem. 1991; 266: 19995-20000
        • Sprecher H.
        The Metabolism of (N-3) and (N-6) Fatty Acids and Their Oxygenation by Platelet and Cyclooxygenase and Lipooxygenase.
        Prog. Lipid. Res. 1986; 25: 19-28
        • Sprecher H.
        Interconversions Between 20- and 22- Carbon N-3 and N-6 Fatty Acids Via 4-Desaturase Independent Pathways.
        in: Sinclair A.J. Gibson R. Essential Fatty Acids and Eicosanoids, American Oil Chemists’ Society. Champaign, Illinois1992: 18-22
        • Jeffcoat R.
        The biosynthesis of unsaturated fatty acids and its control in mammalian liver.
        Essays Biochem. 1997; 15: 1-36
        • Luthria D.L.
        • Mohammed B.S.
        H. Sprecher Regulation of the bio-synthesis of 4, 7, 10, 13, 16, 19-docosahexaenoic acid,.
        J. Biol. Chem. 1996; 271: 16020-16025
        • Kersten S.
        • Desvergne B.
        • Wahil W.
        Roles of PPARs in health and disease. Nature. 2000; 405: 421-424
        • Willson T.M.
        • Brown P.J.
        • Sternbach D.D.
        • Henke B.R.
        The PPARs.
        J. Med. Chem. 2000; 43: 527-550
        • De Urquiza A.M.
        • Liu S.
        • Sjoberg M.
        • Zetterstrom R.H.
        • Griffiths W.
        • Sjovall J.
        • Perlmann T.
        Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain.
        Science. 2000; 290: 2140-2144
        • Lampen A.
        • Meyer S.
        • Nau H.
        Phytanic acid and docosahexaenoic acid increase the metabolism of all-trans retinoic acid and CYP26 gene expression in intestinal cells.
        Biochim. Biophys. Acta. 2001; 1521: 97-106
        • Braissant O.
        • Foufelle F.
        • Scotto C.
        • Dauça M.
        • Wahli W.
        differential expression of peroxisome proliferator-activated receptors (PPARs).
        -β and -γ in the adult rat, Endocrinology. 1996; 137: 354-366
        • Schoonjans K.
        • Staels B.
        • Auwerx J.
        The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation.
        Biochim. Biophys. Acta. 1996; 1302: 93-109
        • Martin G.
        • Poirier H.
        • Hennuyer N.
        • Crombie D.
        • Fruchart J.C.
        • Heyman R.A.
        • Besnard P.
        • Auwerx J.
        Induction of the fatty acid transport protein 1 and acyl-CoA synthase genes by dimer-selective rexinoids suggests that the peroxisome proliferator-activated receptor-retinoid X receptor heterodimer is their molecular target.
        J. Biol. Chem. 2000; 275: 12612-12618
        • Fourcade S.
        • Savary S.
        • Albet S.
        • Gauthe D.
        • Gondcaille C.
        • Pineau T.
        • Bellenger J.
        • Bentejac M.
        • Holzinger A.
        • Berger J.
        • Bugaut M.
        Fibrate induction of the adrenoleukodystrophy-related gene (ABCD2).
        Eur. J. Biochem. 2001; 268: 3490-3500
        • Wolfrum C.
        • Borrmann C.M.
        • Borchers T.
        • Spener F.
        Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha —and gamma-mediated gene expression via liver fatty acid binding protein.
        Proc. Natl. Acad. Sci. USA. 2001; 98: 2323-2328
        • Ishibashi S.
        • Yamada N.
        Dual regulation of mouse Δ5- and Δ6-desaturase gene expression by SREBP-1 and PPARα.
        J. Lipid. Res. 2002; 43: 107-114
        • Chawla A.
        • Rapa J.
        • Evans R.M.
        • Mangeldorf D.
        Nuclear receptors and lipid physiology.
        Science. 2001; 294: 1866-1870
        • Keller H.
        • Dreyer C.
        • Medin J.
        • Mahfoudi A.
        • Ozato K.
        • Wahli W.
        Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc. Natl. Acad. Sci. USA. 1993; 90: 2160-2164
        • Yang L.M.
        • Tin-U C.
        • Wu K.
        • Brown P.
        Role of retinoid receptors in the prevention and treatment of breast cancer.
        J. Mammary Gland, Biol. Neoplasia. 1999; 4: 377-388
        • Folch J.
        M. Lees G.H. Sloane-Stanley.
        A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem. 1957; 226: 497-509
        • Baskaran S.
        • Lakshmi S.
        • Prasad P.R.
        Effect of cigarette smoke on lipid peroxidation and antioxidant enzymes in albino rat.
        Ind. J. Exp. Biol. 1999; 137: 1196-1200
        • Matsuzaka T.
        • Shimano H.
        • Yahagi N.
        • Amemiya-Kudo M.
        • Yoshikawa T.
        • Hasty A.H.
        • Tamura Y.
        • Osuga J.
        • Okazaki H.
        • Iizuka Y.
        • Takahashi A.
        • Sone H.
        • Gotoda T.
        • Ohkawa H.
        • Ohishi N.
        • Yagi K.A.
        Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.
        Anal. Biochem. 1979; 95: 351-358
        • Hamm M.W.
        • Chan V.
        • Wolf G.
        Liver microsomal membrane fluidity and lipid characteristics in vitamin A-deficient rats.
        Biochem. J. 1987; 245: 907-910
        • Carbini L.
        • Dazzi E.
        • Padalino A.
        Vitamin A and biological membrane. Nota V — Fatty acid composition of erythrocyte stroma in vitamin A deficient rats,.
        STANU. 1975; 5: 239-244
        • Padalino A.
        • Dazzi E.
        • Carbini L.
        Vitamin A and biological membranes. Nota VI-Fatty acid composition of liver mitochondrial membranes in vitamin A-deficient rats,.
        STANU. 1975; 5: 317-319
        • Alam S.Q.
        • Alam B.S.
        Microsomal fatty acid desaturase activities in vitamin A-deficient rat liver.
        Biochim. Biophys. Acta. 1985; 833: 175-177
        • Holman R.T.
        Control of polyunsaturated fatty acids in tissue of lipids.
        J. Coll. Nutr. 1986; 5: 183-211
        • Zolfaghar R.
        • Cifelli C.J.
        • Banta M.D.
        • Ross A.C.
        Fatty acid delta(5)-desaturase mRNA is regulated by dietary vitamin A and exogenous retinoic acid in liver of adults rats.
        Arch. Biochem. Biophys. 2001; 391: 8-15
        • Infante J.P.
        • Huszagh V.A.
        On the molecular etiology of decreased arachidonic (20:4n-6) docosapentaenoic (22:5n-6) and docosahexaenoic (226:n-3) acids in Zellweger syndrome and other peroxisomal disorders.
        Mol. Cell. Biochem. 1997; 168: 101-115
        • Infante J.P.
        • Huszagh V.A.
        Analysis of the putative role of 24-carbon polyunsaturated fatty acids in the biosynthesis of docosapentaenoic (22:5n-6) and docosahexaenoic (22:6n-3) acids.
        FEBS Lett. 1998; 431: 1-6
        • Infante J.P.
        • Huszagh V.A.
        Zellweger syndrome knockout mouse models challenge putative peroxisomal beta-oxidation involvement in docosahexaenoic acid (226n-3) biosynthesis.
        Mol. Genet. Metab. 2001; 72: 1-7
        • Rodriguez A.
        • Sarda P.
        • Boult P.
        • Leger C.L.
        Descomps B. Differential effect of N-Ethyl Maleimide on Δ6-desaturase activity in human fetal liver toward fatty acids of n-6 and n-3 series,.
        Lipids. 1999; 3: 23-30
        • Everts H.B.
        • Classsen D.O.
        • Hermoyian C.L.
        • Berdanier C.D.
        Nutrient-gene interaction.
        IUBMB Life. 2002; 53: 295-301
        • Casas F.
        • Daury L.
        • Grandemange S.
        • Busson M.
        • Seyer P.
        • Hatier R.
        • Carazo A.
        • Cabello G.
        • Wrutniak-Cabello C.
        Endocrine regulation of mitochonderial activity.
        FASEB J. 2003; 17: 426-436
        • Everts H.B.
        • Berdanier C.D.
        Regulation of mitochondrial gene expression by retnoids.
        IUBMB Life. 2002; 54: 45-49
      2. M. Neuringer, W.E. Conner, D.S. Lin, L. Barstad, S. Luck, Biochemical and functional effects of prenatal and postnatal ω3 fatty acid deficiency on retina and brain in rhesus monkeys, Proc. Nat. Acad. Sci. USA 83 (986) 4021 4025

        • Bourre J.M.
        • Francois M.
        • Youyou A.
        • Dumont O.
        • Picitotti M.
        • Pascal G.
        • Durand G.
        The effects of dietary α-linolenic acid on the composition of nerve membranes, enzymetic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats.
        J. Nutr. 1989; 119: 1880-1892
        • Weisinger H.S.
        • Vingrys A.J.
        • Sinclair A.J.
        Effecst of dietary n-3 deficiency on the electroretinogram in the guinea pig.
        Ann. Nutr. Metab. 1996; 40: 91-98
        • Uauy R.
        • Birch D.G.
        • Birch E.E.
        • Tyson J.E.
        • Hoffman D.R.
        Effect of dietary omega-3 fatty acids on retinal function of very-low-birth-weight neonates.
        Pediatr. Res. 1990; 28: 485-492
        • Carlson S.E.
        • Werkman S.H.
        • Tolley E.A.
        Effect of long-chain n-3 fatty acid supplementation on visual acuity and growth of preterm with and without bronchopulmonary dysplasia.
        Am. J. Clin. Nutr. 1996; 63: 687-697
        • Birch E.E.
        • Garfield S.
        • Hoffman D.R.
        • Uauy R.
        A randomised controlled trial of early dietary supply of long-chain poly unsaturated fatty acids and mental development in term infants.
        Dev. Med. Child. Neurol. 2000; 42: 174181
        • Bouwstra H.
        • Dijck-Brouwer D.A.
        • Wildeman J.A.
        • Tjoonk H.M.
        • van der Heide J.C.
        • Boersma E.R.
        • Muskiet F.A.
        • Hadders-Algra M.
        Long-chain polyunsaturated fatty acids have a positive effect on the quality of general movements of healthy term infants.
        Am. J. Clin. Nutr. 2003; 78: 313-318
        • Cocco S.
        • Diaz G.
        • Stancampiano R.
        • Diana A.
        • Carta M.
        • Curreli R.
        • Sarais L.
        • Fadda F.
        Vitamin A deficiency produces spatial learning and memory impairment in rats.
        Neuroscience. 2002; 115: 428-475