Research Article| Volume 71, ISSUE 6, P391-397, December 2004

Effect of metformin vs. placebo treatment on serum fatty acids in non-diabetic obese insulin resistant individuals

Published:October 11, 2004DOI:


      Metformin improves insulin sensitivity, which is correlated to phospholipid fatty acid composition in obese type 2 diabetics. We aimed at investigating the relationship between Metformin and fatty acids in obese insulin resistant non-diabetic individuals. A double-blind, placebo-controlled 20-week trial was performed in 21 BMI and age-matched insulin resistant non-diabetic individuals receiving either Metformin or placebo. Insulin sensitivity together with metabolic parameters and fatty acids in serum phospholipids were measured at baseline and at 20 weeks. A significant decrease in body weight, BMI, percentage body fat, the sum of saturated fatty acids in serum phospholipids and increase in insulin sensitivity index were observed following the 20-week treatment. These changes did not differ significantly between the groups. Energy restriction rather than Metformin treatment appears to be responsible for the observed changes. The associations previously found in diabetics between insulin sensitivity and phospholipid fatty acids may not be mediated by Metformin.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Saltiel A.R.
        • Kahn C.R.
        Insulin signalling and the regulation of glucose and lipid metabolism.
        Nature. 2001; 414: 799-806
        • Lillioja S.
        • Mott D.M.
        • Spraul M.
        • et al.
        Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians.
        N Engl. J. Med. 1993; 329: 1988-1992
        • Iannello S.
        • Camuto M.
        • Cavaleri A.
        • et al.
        Effects of short-term metformin treatment on insulin sensitivity of blood glucose and free fatty acids.
        Diabetes Obes. Metab. 2004; 6: 8-15
        • Giannarelli R.
        • Aragona M.
        • Coppelli A.
        • Del Prato S.
        Reducing insulin resistance with metformin.
        Diabetes Metab. 2003; 29: 6S28-6S35
        • Fulgencio J.P.
        • Kohl C.
        • Girard J.
        • Pegorier J.P.
        Effect of Metformin on fatty acid and glucose metabolism in freshly isolated hepatocytes and on specific gene expression in cultured hepatocytes.
        Biochem. Pharmacol. 2001; 62: 439-446
        • Fontbonne A.
        • Charles M.A.
        • Juhan-Vague I.
        • et al.
        The effect of metformin on the metabolic abnormalities associated with upper-body fat distribution.
        BIGPRO Study Group, Diabetes Care. 1996; 19: 920-926
        • Rains S.G.H.
        • Wilson G.A.
        • Richmond W.
        • Elkeles R.S.
        The reduction of low density lipoprotein cholesterol by metformin is maintained with long-term therapy.
        J. R. Soc. Med. 1989; 82: 93-94
        • Jeppensen J.
        • Zhon M.Y.
        • Chen Y.D.
        • Reaven G.M.
        Effect of metformin on post-prandial lipemia in patients with fairly to poorly controlled NIDDM.
        Diabetes Care. 1994; 17: 1093-1099
        • Perriello G.
        • Misericordia P.
        • Volpi E.
        • et al.
        Acute antihyperglycemic mechanism of metformin in NIDDM.
        Diabetes. 1994; 43: 920-928
        • Stolar M.W.
        Insulin resistance, diabetes, and the adipocyte.
        Am. J. Health Syst. Pharm. 2002; 59: S3-S8
        • Lands W.E.M.
        Long-term fat intake and biomarkers.
        Am. J. Clin. Nutr. 1995; 61: 721S-725S
        • Kohlmeier L.
        Future of dietary exposure assessment.
        Am. J. Clin. Nutr. 1995; 61: 702S-709S
        • Vessby B.
        Dietary fat, fatty acid composition in plasma and the metabolic syndrome.
        Curr. Opin. Lipidol. 2003; 14: 15-19
        • Lovejoy J.C.
        • Smith S.R.
        • Champagne C.M.
        • et al.
        Effects of diets enriched in saturated (palmitic), monounsaturated (oleic), or trans (elaidic) fatty acids on insulin sensitivity and substrate oxidation in healthy adults.
        Diabetes Care. 2002; 25: 1283-1288
        • Folsom A.R.
        • Ma J.
        • McGovern P.G.
        • Eckfeldt H.
        Relation between plasma phospholipid saturated fatty acids and hyperinsulinemia.
        Metabolism. 1996; 45: 223-228
        • Pelikánová T.
        • Kazdová L.
        • Chvojková S.
        • Base J.
        Serum phospholipid fatty acid composition ad insulin action in type 2 diabetic patients.
        Metabolism. 2001; 50: 1472-1478
        • Clifton P.M.
        • Nestel P.J.
        Relationship between plasma insulin and erythrocyte fatty acid composition.
        Prostaglandins Leukot. Essent. Fatty Acids. 1998; 59: 191-194
        • van Marken Lichtenbelt W.D.
        • Westerterp K.R.
        • Wouters L.
        • Luijendijk S.C.
        Validation of bioelectrical-impedance measurements as a method to estimate body-water compartments.
        Am. J. Clin. Nutr. 1994; 60: 159-166
      1. Body stat®. User's guide for Body stat® 1500 body composition analysis. BODY STAT (Isle of Man). LIMITED, Douglas 1992–1994.

        • Matthews D.R.
        • Hosker J.P.
        • Rudenski A.
        • Naylor B.A.
        • Treacher D.F.
        • Turner R.C.
        Homeostasis model assessment.
        Diabetologia. 1985; 28: 412-419
        • Stumvoll M.
        • Mitrakou A.
        • Pimenta W.
        • et al.
        Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity.
        Diabetes Care. 2000; 23: 295-301
        • Matsuda M.
        • DeFronzo R.A.
        Insulin sensitivity indices obtained from oral glucose tolerance testing.
        Diabetes Care. 1999; 22: 1462-1470
        • Schofield W.N.
        Predicting basal metabolic rate, new standards and review of previous work.
        Hum. Nutr. Clin. Nutr. 1985; 39: 5-41
      2. Tietz N.W. Clinical Guide to Laboratory Tests. WB Saunders Company, Philadelphia1995: 268-273
        • Sapin R.
        • Le Galudec V.
        • Gasser F.
        • Pinget M.
        • Grucker D.
        Elecsys insulin assay.
        Clin. Chem. 2001; 47: 602-605
        • Allain C.
        • Poon L.
        • Chan C.
        Enzymatic determination of total cholesterol.
        Clin. Chim. 1974; 20: 470-475
        • Bucolo G.
        • David H.
        Quantitative determination of serum triglycerides by the use of enzymes.
        Clin. Chim. 1973; 19: 476-482
        • Nauck M.
        • März W.
        • Jarausch J.
        • Cobbaert C.
        • Sägers A.
        • Bernard D.
        • et al.
        Multicenter evaluation of a homogenous assay for HDL-cholesterol without sample pretreatment.
        Clin. Chim. 1997; 43: 1622-1629
        • Winocour P.H.
        • Ishola M.
        • Durrington P.N.
        Validation of the Friedewald formula for the measurement of low density lipoprotein cholesterol in insulin-dependent diabetes mellitus.
        Clin. Chim. Acta. 1989; 179: 79-84
        • Christophe A.B.
        • Mattijs F.
        New method for the determination of the fatty acid pattern of serum lipid classes.
        Clin. Chim. Acta. 1967; 16: 39-43
        • Christophe A.B.
        • Robberecht E.
        • Franckx H.
        • De-Baets F.
        • Van-de-Pas M.
        Effect of administration of gamma-linolenic acid on the fatty acid composition of serum phospholipids and cholesteryl esters in patients with cystic fibrosis.
        Ann. Nutr. Metab. 1994; 38: 40-47
        • Schoonjans F.
        • Zalata A.
        • Depuydt C.E.
        • Comhaire F.H.
        Comput. Meth. Programs Biomed. 1995; 48: 257-262
        • Wing R.R.
        • Blair E.H.
        • Bononi P.
        • Marcus M.D.
        • Watanabe R.
        • Bergman R.N.
        Caloric restriction per se is a significant factor in improvements in glycemic control and insulin sensitivity during weight loss in obese NIDDM patients.
        Diabetes Care. 1994; 17: 30-36
        • Kelley D.E.
        • Goodpaster B.H.
        Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance,.
        Diabetes Care. 2001; 24: 933-941
        • Diabetes Prevention Program Research Group
        Effects of withdrawal from metformin on the development of diabetes in the diabetes prevention program.
        Diabetes Care. 2003; 26: 977-980
        • Després J.P.
        Potential contribution of metformin to the management of cardiovascular disease risk in patients with abdominal obesity, the metabolic syndrome and type 2 diabetes.
        Diabetes Metab. 2003; 29: 6S53-6S61
        • UK Prospective Diabetes Study (UKPDS) Group
        Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34).
        Lancet. 1998; 352: 854-865
        • Knowler W.C.
        • Barrett-Connor E.
        • Fowler S.E.
        • et al.
        Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.
        N. Engl. J. Med. 2002; 346: 393-403
        • Lehtovirta M.
        • Forsen B.
        • Gullstrom M.
        • et al.
        Metabolic effects of metformin in patients with impaired glucose tolerance.
        Diabetes Med. 2001; 18: 578-583
        • Li C.L.
        • Pan C.Y.
        • Lu J.M.
        • et al.
        Effect of metformin on patients with impaired glucose tolerance.
        Diabetes Med. 1999; 16: 477-481