Advertisement
Research Article| Volume 75, ISSUE 3, P161-168, September 2006

Metabolism of α-linolenic acid in humans

      Abstract

      α-Linolenic acid (18:3n-3) is essential in the human diet, probably because it is the substrate for the synthesis of longer-chain, more unsaturated n-3 fatty acids eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) which are required for tissue function. This article reviews the recent literature on 18:3n-3 metabolism in humans, including fatty acid β-oxidation, recycling of carbon by fatty acid synthesis de novo and conversion to longer-chain polyunsaturated fatty acids (PUFA). In men, stable isotope tracer studies and studies in which volunteers increased their consumption of 18:3n-3 show conversion to 20:5n-3 and 22:5n-3, but limited conversion to 22:6n-3. However, conversion to 18:3n-3 to 20:5n-3 and 22:6n-3 is greater in women compared to men, due possibly to a regulatory effect of oestrogen, while partitioning of 18:3n-3 towards β-oxidation and carbon recycling was lower than in men. These gender differences may be an important consideration in making dietary recommendations for n-3 PUFA intake.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sinclair A.J.
        • Attar-Bashi N.M.
        • Li D.
        What is the role of α-linolenic acid for mammals?.
        Lipids. 2000; 37: 1113-1123
        • Saunders D.R.
        • Sillery J.K.
        Absorption of triglyceride by human small intestine: dose–response relationships.
        Am. J. Clin. Nutr. 1988; 48: 988-991
        • Tang A.B.
        • Nishimura K.Y.
        • Phinney S.D.
        Preferential reduction in adipose tissue alpha-linolenic acid (18:3 omega 3) during very low calorie dieting despite supplementation with 18:3 omega 3.
        Lipids. 1993; 28: 987-993
        • Kaminskas A.
        • Zieden B.
        • Elving B.
        • Kristenson M.
        • Abaravicius A.
        • Bergdahl B.
        • Olsson A.G.
        • Kucinskiene Z.
        Adipose tissue fatty acids in men from two populations with different cardiovascular risk: the LiVicordia study.
        Scand. J. Clin. Lab. Invest. 1999; 59: 227-232
        • Burdge G.C.
        • Jones A.E.
        • Wootton S.A.
        Eicosapentaenoic and docosapentaenoic acids are the principal products of α-linolenic acid metabolism in young men.
        Br. J. Nutr. 2002; 88: 355-363
        • Evans K.
        • Burdge G.C.
        • Wootton S.A.
        • Clark M.L.
        • Frayn K.N.
        Regulation of dietary fatty acid entrapment in subcutaneous adipose tissue and skeletal muscle.
        Diabetes. 2002; 51: 2684-2690
        • McCloy U.
        • Ryan M.A.
        • Pencharz P.B.
        • Ross R.J.
        • Cunnane S.C.
        Comparison of the metabolism of eighteen-carbon 13C-unsaturated fatty acids in healthy women.
        J. Lipid Res. 2004; 45: 474-485
        • Bretillon L.
        • Chardigny J.M.
        • Sebedio J.L.
        • Noel J.P.
        • Scrimgeour C.M.
        • Fernie C.E.
        • Loreau O.
        • Gachon P.
        • Beaufrere B.
        Isomerization increases the postprandial oxidation of linoleic acid but not α-linolenic acid in men.
        J. Lipid Res. 2001; 42: 995-997
        • DeLany J.P.
        • Windhauser M.M.
        • Champagne C.M.
        • Bray G.A.
        Differential oxidation of individual dietary fatty acids in humans.
        Am. J. Clin. Nutr. 2000; 72: 905-911
        • Burdge G.C.
        • Finnegan Y.E.
        • Minihane A.M.
        • Williams C.M.
        • Wootton S.A.
        Effect of altered dietary n-3 fatty aid intake upon plasma lipid fatty acid composition, conversion of [13C] α-linolenic acid to longer-chain fatty acids and partitioning towards β-oxidation in older men.
        Br. J. Nutr. 2003; 90: 311-321
        • Vermunt S.H.F.
        • Mensink R.P.
        • Simonis A.M.G.
        • Hornstra G.
        Effects of dietary α-linolenic acid on the conversion and oxidation of [13C]-α-linolenic acid.
        Lipids. 2000; 35: 137-142
        • Irving C.S.
        • Wong W.W.
        • Shulman R.J.
        • Smith E.O.
        • Klein P.D.
        [13C] Bicarbonate kinetics in humans: intra- vs. interindividual variations.
        Am. J. Physiol. 1983; 245: R190-R202
        • Burdge G.C.
        • Wootton S.A.
        Conversion of α-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women.
        Br. J. Nutr. 2002; 88: 411-420
        • Jones A.E.
        • Murphy J.L.
        • Stolinski M.
        • Wootton S.A.
        The effect of age and gender on the metabolic disposal of 1-13C palmitic acid.
        Eur. J. Clin. Nutr. 1998; 52: 22-28
        • Jones A.E.
        • Stolinski M.
        • Smith R.D.
        • Murphy R.J.L.
        • Wootton S.A.
        Effect of fatty acid chain length and saturation on the gastrointestinal handling and metabolic disposal of dietary fatty acids in women.
        Br. J. Nutr. 1999; 81: 37-43
        • Leyton J.
        • Drury P.J.
        • Crawford M.A.
        Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat.
        Br. J. Nutr. 1987; 57: 383-393
        • Clouet P.
        • Niot I.
        • Bezard J.
        Pathway of alpha-linolenic acid through the mitochondrial outer membrane in the rat liver and influence on the rate of oxidation. Comparison with linoleic and oleic acids.
        Biochem. J. 1989; 263: 867-873
      1. Ministry of Agriculture, Fisheries and Food, Food information surveillance sheet 127. Dietary Intake of Iodine and Fatty Acids. Ministry of Agriculture, Fisheries and Food, London, 1997.

        • Sheaff-Greiner R.C.
        • Zhang Q.
        • Goodman K.J.
        • Giussani D.A.
        • Nathanielsz P.W.
        • Brenna J.T.
        Linoleate, α-linolenate, and docosahexaenoate recycling into saturated and monounsaturated fatty acids is a major pathway in pregnant or lactating adults and fetal or infant rhesus monkeys.
        J. Lipid Res. 1996; 37: 2675-2686
        • Cunnane S.C.
        • Ryan M.A.
        • Nadeau C.R.
        • Bazinet R.P.
        • Musa-Veloso K.
        • McCloy U.
        Why is carbon from some polyunsaturates extensively recycled in lipid synthesis?.
        Lipids. 2003; 38: 477-484
        • Burdge G.C.
        • Wootton S.A.
        Conversion of α-linolenic acid to palmitic, palmitoleic, stearic and oleic acids in men and women.
        Prostaglandins Leukot. Essent. Fatty Acids. 2003; 69: 283-290
        • Sprecher H.
        The roles of anabolic and catabolic reactions in the synthesis and recycling of polyunsaturated fatty acids.
        Prostaglandins Leukot. Essent. Fatty Acids. 2002; 67: 79-83
        • Li Z.
        • Kaplan M.L.
        • Hachey D.L.
        Hepatic microsomal and peroxisomal docosahexaenoate biosynthesis during piglet development.
        Lipids. 2000; 35: 1325-1333
        • Harmon S.D.
        • Kaduce T.L.
        • Manuel T.D.
        • Spector A.A.
        Effect of Δ6-desaturase inhibitor SC-26196 on PUFA metabolism in human cells.
        Lipids. 2003; 38: 469-476
        • Martinez M.
        The fundamentals and practice of docosahexaenoic acid therapy in peroxisomal disorders.
        Curr. Opin. Clin. Nutr. Metab. Care. 2000; 3: 101-108
        • Infante J.P.
        • Huszagh V.A.
        Analysis of the putative role of 24-carbon polyunsaturated fatty acids in the biosynthesis of docosapentaenoic (22:5n-6) and docosahexaenoic (22:6n-3) acids.
        FEBS Lett. 1998; 43: 1-6
        • Burdge G.C.
        • Calder P.C.
        Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults.
        Reprod. Nutr. Dev. 2005; 45: 581-597
        • Finnegan Y.E.
        • Howarth D.
        • Minihane A.M.
        • Kew S.
        • Miller G.J.
        • Calder P.C.
        • Williams C.M.
        Plant and marine derived (n-3) polyunsaturated fatty acids do not affect blood coagulation and fibrinolytic factors in moderately hyperlipidemic humans.
        J. Nutr. 2003; 133: 2210-2213
        • James M.J.
        • Ursin V.M.
        • Cleland L.G.
        Metabolism of stearidonic acid in human subjects: comparison with the metabolism of other n-3 fatty acids.
        Am. J. Clin. Nutr. 2003; 77: 1140-1145
        • Emken E.A.
        • Adlof R.O.
        • Gulley R.M.
        Dietary linoleic acid influences desaturation and acylation of deuterium-labeled linoleic and linolenic acids in young adult males.
        Biochim. Biophys. Acta. 1994; 1213: 277-288
        • Emken E.A.
        • Adlof R.O.
        • Duval S.M.
        • Nelson G.J.
        Effect of dietary docosahexaenoic acid on desaturation and uptake in vivo of isotope-labeled oleic, linoleic and linolenic acids by male subjects.
        Lipids. 1999; 34: 785-798
        • Salem N.
        • Powlosky R.
        • Wegher B.
        • Hibbeln J.
        In vivo conversion of linoleic acid to arachidonic acid in human adults.
        Prostaglandins Leukot. Essent. Fatty Acids. 1999; 60: 407-410
        • Pawlosky R.J.
        • Hibbeln J.R.
        • Novotny J.A.
        • Salem N.
        Physiological compartmental analysis of α-linolenic acid metabolism in adult humans.
        J. Lipid Res. 2001; 42: 1257-1265
        • Pawlosky R.J.
        • Hibbeln J.R.
        • Lin Y.
        • Goodson S.
        • Riggs P.
        • Sebring N.
        • Brown G.L.
        • Salem N.
        Effects of beef- and fish-based diets on the kinetics of n-3 fatty acid metabolism in human subjects.
        Am. J. Clin. Nutr. 2003; 77: 565-572
        • Hussein N.
        • Ah-Sing E.
        • Wilkinson P.
        • Leach C.
        • Griffin B.A.
        • Millward D.J.
        Relative rates of long chain conversion of 13C linoleic and α-linolenic acid in response to marked changes in their dietary intake in male adults.
        J. Lipid Res. 2005; 46: 269-280
        • Goyens P.L.
        • Spilker M.E.
        • Zock P.L.
        • Katan M.B.
        • Mensink R.P.
        Development of a compartmental model to quantify alpha-linolenic acid conversion after longer-term intake of multiple tracer boluses.
        J. Lipid Res. 2005; 46: 1474-1483
        • Emken E.A.
        Stable isotope approaches, applications and issues related to polyunsaturated fatty acid metabolism studies.
        Lipids. 2001; 36: 965-973
        • Burdge G.
        Alpha-linolenic acid metabolism in men and women: nutritional and biological implications.
        Curr. Opin. Clin. Nutr. Metab. Care. 2004; 7: 137-144
        • Pawlosky R.
        • Hibbeln J.
        • Lin Y.
        • Salem N.
        n-3 fatty acid metabolism in women.
        Br. J. Nutr. 2003; 90: 993-994
        • Ottosson U.B.
        • Lagrelius A.
        • Rosing U.
        • von Schoultz B.
        Relative fatty acids composition of lecithin during postmenopausal replacement therapy—a comparison between ethinyl estradiol and estradiol valerate.
        Gynecol. Obstet. Invest. 1984; 18: 296-302
        • Giltay E.J.
        • Duschek E.J.
        • Katan M.B.
        • Zock P.L.
        • Neele S.J.
        • Netelenbos J.C.
        Raloxifene and hormone replacement therapy increase arachidonic acid and docosahexaenoic acid levels in postmenopausal women.
        J. Endocrinol. 2004; 182: 399-408
        • Lauritzen L.
        • Hansen H.S.
        • Jorgensen M.H.
        • Michaelsen K.F.
        The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina.
        Prog. Lipid Res. 2001; 40: 1-94
        • de Gomez Dumm I.N.
        • Brenner R.R.
        Oxidative desaturation of alpha-linoleic, linoleic, and stearic acids by human liver microsomes.
        Lipids. 1975; 10: 315-317
        • Poisson J.-P.
        • Dupuy R.-P.
        • Sarda P.
        • Descomps B.
        • Narce M.
        • Rieu D.
        • Crastes de Paulet A.
        Evidence that liver microsomes of human neonates desaturate essential fatty acids.
        Biochim. Biophys. Acta. 1993; 1167: 109-113
        • Salem N.
        • Wegher B.
        • Mena P.
        • Uauy R.
        Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants.
        Proc. Natl. Acad. Sci. USA. 1996; 93: 49-54
        • Carnielli V.P.
        • Wattimena D.J.
        • Luijendijk I.H.
        • Boerlage A.
        • Degenhart H.J.
        • Sauer P.J.
        The very-low-birth-weight premature infant is capable of synthesizing arachidonic and docosahexaenoic acid from linolenic and linolenic acid.
        Pediatr. Res. 1996; 40: 169-174
        • Sauerwald T.U.
        • Hachey D.L.
        • Jensen C.L.
        • Chen H.
        • Anderson R.E.
        • Heird W.C.
        Intermediates in endogenous synthesis of C22:6ω3 and C20:4ω6 by term and preterm infants.
        Pediatr. Res. 1997; 141: 183-187
        • Postle A.D.
        • Al M.D.M.
        • Burdge G.C.
        • Hornstra G.
        The composition of individual molecular species of plasma phosphatidylcholine in human pregnancy.
        Early Hum. Dev. 1995; 43: 47-58
        • Gregersen M.I.
        • Rawson R.A.
        Blood volume.
        Physiol. Rev. 1959; 39: 307-342
        • Burdge G.C.
        • Hunt A.N.
        • Postle A.D.
        Mechanisms of hepatic phosphatidylcholine synthesis in adult rat: effects of pregnancy.
        Biochem. J. 1994; 303: 941-947
        • Larque E.
        • Garcia-Ruiz P.A.
        • Perez-Llamas F.
        • Zamora S.
        • Gil A.
        Dietary trans fatty acids alter the compositions of microsomes and mitochondria and the activities of microsome Δ6-fatty acid desaturase and glucose-6-phosphatase in livers of pregnant rats.
        J. Nutr. 2003; 133: 2526-2531