Research Article| Volume 77, ISSUE 1, P29-35, July 2007

Melatonin and N-acetyl serotonin inhibit selectively enzymatic and non-enzymatic lipid peroxidation of rat liver microsomes

  • Author Footnotes
    1 Training fellowship of the CIC-UNLP Argentina.
    Patricio J. Leaden
    1 Training fellowship of the CIC-UNLP Argentina.
    Cátedra de Bioquímica, Facultad de Ciencias Veterinarias, Argentina
    Search for articles by this author
  • Author Footnotes
    2 Member of Carrera del Investigador Científico, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) de la República Argentina.
    Angel Catalá
    Corresponding author. Tel.:542214257430, 542214257291x117; fax: 542214254642.
    2 Member of Carrera del Investigador Científico, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) de la República Argentina.
    Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CIC. CC 16, Sucursal 4, 1900 La Plata, Argentina
    Search for articles by this author
  • Author Footnotes
    1 Training fellowship of the CIC-UNLP Argentina.
    2 Member of Carrera del Investigador Científico, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) de la República Argentina.


      Melatonin (N-acetyl-5-methoxytryptamine) and its immediate precursor N-acetyl serotonin in the metabolism of tryptophan are free radical scavengers that have been found to protect against non-enzymatic lipid peroxidation in many experimental models. By contrast, little is known about the antioxidant ability of these indoleamines against NADPH enzymatic lipid peroxidation. The light emission produced by rat-liver microsomes, expressed as total cpm during 180min of incubation at 37°C, was two-fold greater in the presence of ascorbate (0.4mM) when compared with NADPH (0.2mM). Maximal peaks of light emission produced by microsomes lipid peroxidized with ascorbic-Fe2+ or NADPH and expressed as cpm were 354,208 (at 60min) and 135,800 (at 15min), respectively. During non-enzymatic lipid peroxidation a decrease of total chemiluminescence (inhibition of lipid peroxidation) was observed when increasing concentrations of melatonin were added to liver microsomes. The protective effect was concentration-dependent. The inhibition observed in light emission was coincident with the protection of the most PUFAs. Preincubation of microsomes with N-acetyl serotonin reduced these changes very dramatically. Thus, in the presence of both antioxidants (0.36, 0.75, 1.5mM), light emission percent inhibition during non-enzymatic (ascorbate-Fe2+) lipid peroxidation of rat liver microsomes was for melatonin: 6.12, 16.20, 34.88 and for N-acetyl serotonin: 85.10, 88.48, 84.4 respectively. The incubation of rat liver microsomes in the presence of NADPH (0.36, 0.75, 1.5 mM) produce a sudden increase of chemiluminescence that gradually increased and reached a maximal value at about 15min; however, N-acetyl serotonin reduced these changes very efficiently.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Tan D.X.
        • Chen L.D.
        • Poeggeler B.
        • Manchester L.C.
        • Reiter R.J.
        Melatonin: a potent. Endogenous hydroxyl radical scavenger.
        Endocr. J. 1993; 1: 57-60
        • Poeggeler B.
        • Reiter R.J.
        • Hardeland R.
        • Tan D.X.
        • Barlow-Walden L.R.
        Melatonin and structurally-related. endogenous indoles act as potent electron donors and radical scavengers in vitro.
        Redox. Rep. 1996; 2: 179-184
        • Itoh M.T.
        • Ishizuka B.
        • Kudo Y.
        • Fusama S.
        • Amemiya A.
        • Sumi Y.
        Detection of melatonin and serotonin N-acetyltransferase and hydroxyindole-O-methyltransferase activities in rat ovary.
        Mol. Cell. Endocrinol. 1997; 136: 7-13
        • Pang S.F.
        • Tang F.
        • Tang P.L.
        Negative correlation of age and the levels of pineal melatonin, pineal N-acetyl serotonin, and serum melatonin in male rats.
        J. Exp. Zool. 1984; 229: 41-47
        • Ng T.B.
        • Liu F.
        • Zhao L.
        Antioxidative and free radical scavenging activities of pineal indoles.
        J. Neural. Transm. 2000; 107: 1243-1251
        • Enoch H.G.
        • Catala A.
        • Strittmatter P.
        Mechanism of rat liver microsomal stearyl CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid.
        J. Biol. Chem. 1976; 251: 5095-5103
        • Catalá A.
        An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay.
        Int. J. Biochem. Cell. Biol. 2006; 38 (Review): 1482-1495
        • Garcia J.J.
        • Reiter R.J.
        • Karbownik M.
        • Calvo J.R.
        • Ortiz G.G.
        • Tan D.X.
        • Martinez-Ballarin E.
        • Acuna-Castroviejo D.
        N-acetylserotonin suppresses hepatic microsomal membrane rigidity associated with lipid peroxidation.
        Eur. J. Pharmacol. 2001; 428: 169-175
        • Leaden P.
        • Barrionuevo J.
        • Catalá A.
        The protection of long chain polyunsaturated fatty acids by melatonin during nonenzymatic lipid peroxidation of rat liver microsomes.
        J. Pineal Res. 2002; 32: 129-134
        • Leaden P.
        • Catalá A.
        Protective effect of melatonin on ascorbate-Fe2+ lipid peroxidation of polyunsaturated fatty acids in rat liver, kidney and brain microsomes: a chemiluminescence study.
        J. Pineal Res. 2005; 39: 164-169
        • Tanger J.O.
        • Jonsson J.
        • Orrenius S.
        Isolation of rat liver microsomes by gel filtration.
        Anal. Biochem. 1973; 54: 597-603
        • Folch J.
        • Lees N.
        • Sloane Stanley G.A.
        A simple method for the isolation and purification of total lipids from animal tissues.
        J. Biol. Chem. 1957; 226: 497-509
        • Lowry O.H.
        • Rosebrough N.J.
        • Farr A.L.
        • Randall R.J.
        Protein measurement with Folin phenol reagent.
        J. Biol. Chem. 1951; 193: 265-275
        • Wright J.R.
        • Rumbaugh R.C.
        • Colby H.D.
        • Miles P.R.
        The relationship between chemiluminescence and lipid peroxidation in rat hepatic microsomes.
        Arch. Biochem. Biophys. 1979; 192: 344-351
        • Backes W.L.
        • Kelley R.W.
        Organization of multiple cytochrome P450s with NADPH-cytochrome P450 reductase in membranes.
        Pharmacol. Ther. 2003; 98: 221-233
        • Svingen B.A.
        • Buege J.A.
        • O’Neal F.O.
        • Aust S.D.
        The mechanism of NADPH-dependent lipid peroxidation. The propagation of lipid peroxidation,.
        J. Biol. Chem. 1979; 254: 5892-5899
        • Gupta M.
        • Kale R.K.
        Paradoxical influence of Ca++ on lipid peroxidation.
        Indian J. Exp. Biol. 1996; 34: 1071-1076
        • Nakano M.
        • Noguchi T.
        • Sugioka K.
        • Fukuyama H.
        • Sato M.
        Spectroscopic evidence for the generation of singlet oxygen in the reduced nicotinamide adenine dinucleotide phosphate-dependent microsomal lipid peroxidation system.
        J. Biol. Chem. 1975; 250: 2404-2406
        • Guajardo M.H.
        • Terrasa A.M.
        • Catala A.
        Protective effect of indoleamines on in vitro ascorbate-Fe2+ dependent lipid peroxidation of rod outer segment membranes of bovine retina.
        J. Pineal Res. 2003; 35: 276-282
        • Horstman J.A.
        • Wrona M.Z.
        • Dryhurst G.
        Further insights into the reaction of melatonin with hydroxyl radical.
        Bioorg Chem. 2002; 30: 371-382
        • Matuszak Z.
        • Reszka K.
        • Chignell C.F.
        Reaction of melatonin and related indoles with hydroxyl radicals: EPR and spin trapping investigations.
        Free Radical Biol. Med. 1997; 23: 367-372
        • Tan D.X.
        • Manchester L.C.
        • Sainz R.M.
        • Mayo J.C.
        • Leon J.
        • Hardeland R.
        • Poeggeler B.
        • Reiter R.J.
        Interactions between melatonin and nicotinamide nucleotide: NADH preservation in cells and in cell-free systems by melatonin.
        J. Pineal Res. 2005; 39: 185-194
        • Mlakar A.
        • Spiteller G.
        Distinction between enzymic and nonenzymic lipid peroxidation.
        J. Chromatogr. A. 1996; 743: 293-300