Advertisement
Research Article| Volume 81, ISSUE 2-3, P213-221, August 2009

Download started.

Ok

Omega-3 fatty acids and dementia

  • Greg M. Cole
    Correspondence
    Corresponding author at: GRECC Veterans Affairs, Greater Los Angeles Healthcare System, Research-151, Bldg 7, Rm A101, 16111 Plummer Street, North Hills, CA 91343, USA. Tel.: +18188917711x9949; fax: +18188955835.
    Affiliations
    Department of Medicine at University of California, Los Angeles, CA, USA

    Department of Neurology at University of California, Los Angeles, CA, USA

    GRECC Veterans Affairs, Greater Los Angeles Healthcare System, Research-151, Building 7, Room A101, 16111 Plummer Street, North Hills, CA 91343, USA
    Search for articles by this author
  • Qiu-Lan Ma
    Affiliations
    Department of Medicine at University of California, Los Angeles, CA, USA

    GRECC Veterans Affairs, Greater Los Angeles Healthcare System, Research-151, Building 7, Room A101, 16111 Plummer Street, North Hills, CA 91343, USA
    Search for articles by this author
  • Sally A. Frautschy
    Affiliations
    Department of Medicine at University of California, Los Angeles, CA, USA

    Department of Neurology at University of California, Los Angeles, CA, USA

    GRECC Veterans Affairs, Greater Los Angeles Healthcare System, Research-151, Building 7, Room A101, 16111 Plummer Street, North Hills, CA 91343, USA
    Search for articles by this author
Published:August 25, 2009DOI:https://doi.org/10.1016/j.plefa.2009.05.015

      Abstract

      More than a dozen epidemiological studies have reported that reduced levels or intake of omega-3 fatty acids or fish consumption is associated with increased risk for age-related cognitive decline or dementia such as Alzheimer's disease (AD). Increased dietary consumption or blood levels of docosahexaenoic acid (DHA) appear protective for AD and other dementia in multiple epidemiological studies; however, three studies suggest that the ApoE4 genotype limits protection. DHA is broadly neuroprotective via multiple mechanisms that include neuroprotective DHA metabolites, reduced arachidonic acid metabolites, and increased trophic factors or downstream trophic signal transduction. DHA is also protective against several risk factors for dementia including head trauma, diabetes, and cardiovascular disease. DHA is specifically protective against AD via additional mechanisms: It limits the production and accumulation of the amyloid β peptide toxin that is widely believed to drive the disease; and it also suppresses several signal transduction pathways induced by Aβ, including two major kinases that phosphorylate the microtubule-associated protein tau and promote neurofibrillary tangle pathology. Based on the epidemiological and basic research data, expert panels have recommended the need for clinical trials with omega-3 fatty acids, notably DHA, for the prevention or treatment of age-related cognitive decline—with a focus on the most prevalent cause, AD. Clinical trials are underway to prevent and treat AD. Results to-date suggest that DHA may be more effective if it is begun early or used in conjunction with antioxidants.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cummings J.L.
        • Cole G.
        Alzheimer disease.
        JAMA. 2002; 287: 2335-2338
        • Fotuhi M.
        • Zandi P.P.
        • Hayden K.M.
        • Khachaturian A.S.
        • Szekely C.A.
        • Wengreen H.
        • Munger R.G.
        • Norton M.C.
        • Tschanz J.T.
        • Lyketsos C.G.
        • Breitner J.C.
        • Welsh-Bohmer K.
        Better cognitive performance in elderly taking antioxidant vitamins E and C supplements in combination with nonsteroidal anti-inflammatory drugs: the Cache County Study.
        Alzheimers Dement. 2008; 4: 223-227
        • Szekely C.A.
        • Green R.C.
        • Breitner J.C.
        • Ostbye T.
        • Beiser A.S.
        • Corrada M.M.
        • Dodge H.H.
        • Ganguli M.
        • Kawas C.H.
        • Kuller L.H.
        • Psaty B.M.
        • Resnick S.M.
        • Wolf P.A.
        • Zonderman A.B.
        • Welsh-Bohmer K.A.
        • Zandi P.P.
        No advantage of A beta 42-lowering NSAIDs for prevention of Alzheimer dementia in six pooled cohort studies.
        Neurology. 2008; 70: 2291-2298
        • Cole G.M.
        • Morihara T.
        • Lim G.P.
        • Yang F.
        • Begum A.
        • Frautschy S.A.
        NSAID and antioxidant prevention of Alzheimer's disease: lessons from in vitro and animal models.
        Ann. N. Y. Acad. Sci. 2004; 1035: 68-84
        • Harris W.S.
        • Miller M.
        • Tighe A.P.
        • Davidson M.H.
        • Schaefer E.J.
        Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives.
        Atherosclerosis. 2008; 197: 12-24
        • Lee J.H.
        • O’Keefe J.H.
        • Lavie C.J.
        • Marchioli R.
        • Harris W.S.
        Omega-3 fatty acids for cardioprotection.
        Mayo Clin. Proc. 2008; 83: 324-332
        • Rosendorff C.
        • Beeri M.S.
        • Silverman J.M.
        Cardiovascular risk factors for Alzheimer's disease.
        Am. J. Geriatr. Cardiol. 2007; 16: 143-149
        • Mozaffarian D.
        • Rimm E.B.
        Fish intake, contaminants, and human health: evaluating the risks and the benefits.
        JAMA. 2006; 296: 1885-1899
        • Lee J.H.
        • O’Keefe J.H.
        • Lavie C.J.
        • Marchioli R.
        • Harris W.S.
        Omega3 fatty acids for cardioprotection.
        Mayo Clin. Proc. 2008; 83: 324-332
        • Maclean C.
        • Issa A.
        • Newberry S.
        • Mojica W.
        • Morton S.
        • Garland R.
        • Hilton L.
        • Traina S.
        • Shekelle P.
        Effects of omega-3 fatty acids on cognitive function with aging, dementia, and neurological diseases.
        Evid. Rep. Technol. Assess (Summ.). 2005; : 1-88
        • Schaefer E.J.
        • Bongard V.
        • Beiser A.S.
        • Lamon-Fava S.
        • Robins S.J.
        • Au R.
        • Tucker K.L.
        • Kyle D.J.
        • Wilson P.W.
        • Wolf P.A.
        Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study.
        Arch. Neurol. 2006; 63: 1545-1550
        • Beydoun M.A.
        • Kaufman J.S.
        • Sloane P.D.
        • Heiss G.
        • Ibrahim J.
        n-3 Fatty acids, hypertension and risk of cognitive decline among older adults in the Atherosclerosis Risk in Communities (ARIC) study.
        Public Health Nutr. 2008; 11: 17-29
        • Wang W.
        • Shinto L.
        • Connor W.E.
        • Quinn J.F.
        Nutritional biomarkers in Alzheimer's disease: the association between carotenoids, n-3 fatty acids, and dementia severity.
        J. Alzheimers. Dis. 2008; 13: 31-38
        • Whalley L.J.
        • Deary I.J.
        • Starr J.M.
        • Wahle K.W.
        • Rance K.A.
        • Bourne V.J.
        • Fox H.C.
        n-3 Fatty acid erythrocyte membrane content, APOE varepsilon4, and cognitive variation: an observational follow-up study in late adulthood.
        Am. J. Clin. Nutr. 2008; 87: 449-454
        • Montine K.S.
        • Kim P.J.
        • Olson S.J.
        • Markesbery W.R.
        • Montine T.J.
        4-hydroxy-2-nonenal pyrrole adducts in human neurodegenerative disease.
        J. Neuropathol. Exp. Neurol. 1997; 56: 866-871
        • Ramassamy C.
        • Averill D.
        • Beffert U.
        • Theroux L.
        • Lussier-Cacan S.
        • Cohn J.S.
        • Christen Y.
        • Schoofs A.
        • Davignon J.
        • Poirier J.
        Oxidative insults are associated with apolipoprotein E genotype in Alzheimer's disease brain.
        Neurobiol. Dis. 2000; 7: 23-37
        • Jofre-Monseny L.
        • Minihane A.M.
        • Rimbach G.
        Impact of apoE genotype on oxidative stress, inflammation and disease risk.
        Mol. Nutr. Food Res. 2008; 52: 131-145
        • Masliah E.
        • Crews L.
        • Hansen L.
        Synaptic remodeling during aging and in Alzheimer's disease.
        J. Alzheimers Dis. 2006; 9: 91-99
        • Salem Jr, N.
        • Litman B.
        • Kim H.Y.
        • Gawrisch K.
        Mechanisms of action of docosahexaenoic acid in the nervous system.
        Lipids. 2001; 36: 945-959
        • Akiyama H.
        • Barger S.
        • Barnum S.
        • Bradt B.
        • Bauer J.
        • Cole G.M.
        • Cooper N.E.
        • Eikelenboom P.
        • Emmerling M.
        • Fiebich B.L.
        • Finch C.E.
        • Frautschy S.
        • Griffin W.S.
        • Hampel H.
        • Hull M.
        • Landreth G.
        • Lue L.
        • Mrak R.
        • Mackenzie I.R.
        • McGeer P.L.
        • O’Banion M.K.
        • Pachter J.
        • Pasinetti G.
        • Plata-Salaman C.
        • Rogers J.
        • Rydel R.
        • Shen Y.
        • Streit W.
        • Strohmeyer R.
        • Tooyoma I.
        • Van Muiswinkel F.L.
        • Veerhuis R.
        • Walker D.
        • Webster S.
        • Wegrzyniak B.
        • Wenk G.
        • Wyss-Coray T.
        Inflammation and Alzheimer's disease.
        Neurobiol. Aging. 2000; 21: 383-421
        • Palop J.J.
        • Chin J.
        • Roberson E.D.
        • Wang J.
        • Thwin M.T.
        • Bien-Ly N.
        • Yoo J.
        • Ho K.O.
        • Yu G.Q.
        • Kreitzer A.
        • Finkbeiner S.
        • Noebels J.L.
        • Mucke L.
        Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease.
        Neuron. 2007; 55: 697-711
        • Ho L.
        • Pieroni C.
        • Winger D.
        • Purohit D.P.
        • Aisen P.S.
        • Pasinetti G.M.
        Regional distribution of cyclo-oxygenase-2 in the hippocampal formation in Alzheimer's disease.
        J. Neurosci. Res. 1999; 57: 295-303
        • Lukiw W.J.
        • Bazan N.G.
        Cycloxygenase 2 RNA message abundance, stability, and hypervariability in sporadic Alzheimer neocortex.
        J. Neurosci. Res. 1997; 50: 937-945
        • Montine T.J.
        • Sidell K.R.
        • Crews B.C.
        • Markesbery W.R.
        • Marnett L.J.
        • Roberts 2nd, L.J.
        • Morrow J.D.
        Elevated CSF prostaglandin E2 levels in patients with probable AD.
        Neurology. 1999; 53: 1495-1498
        • Pratico D.
        • Zhukareva V.
        • Yao Y.
        • Uryu K.
        • Funk C.D.
        • Lawson J.A.
        • Trojanowski J.Q.
        • Lee V.M.
        12/15-lipoxygenase is increased in Alzheimer's disease: possible involvement in brain oxidative stress.
        Am. J. Pathol. 2004; 164: 1655-1662
        • Firuzi O.
        • Zhuo J.
        • Chinnici C.M.
        • Wisniewski T.
        • Pratico D.
        5-Lipoxygenase gene disruption reduces amyloid-beta pathology in a mouse model of Alzheimer's disease.
        FASEB J. 2008; 22: 1169-1178
        • Calon F.
        • Lim G.P.
        • Morihara T.
        • Yang F.
        • Ubeda O.
        • Salem N.J.
        • Frautschy S.A.
        • Cole G.M.
        Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer's disease.
        Eur. J. Neurosci. 2005; 22: 617-626
        • Green K.N.
        • Martinez-Coria H.
        • Khashwji H.
        • Hall E.B.
        • Yurko-Mauro K.A.
        • Ellis L.
        • LaFerla F.M.
        Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-beta and tau pathology via a mechanism involving presenilin 1 levels.
        J. Neurosci. 2007; 27: 4385-4395
        • Oksman M.
        • Iivonen H.
        • Hogyes E.
        • Amtul Z.
        • Penke B.
        • Leenders I.
        • Broersen L.
        • Lutjohann D.
        • Hartmann T.
        • Tanila H.
        Impact of different saturated fatty acid, polyunsaturated fatty acid and cholesterol containing diets on beta-amyloid accumulation in APP/PS1 transgenic mice.
        Neurobiol. Dis. 2006; 23: 563-572
        • Kotilinek L.A.
        • Westerman M.A.
        • Wang Q.
        • Panizzon K.
        • Lim G.P.
        • Simonyi A.
        • Lesne S.
        • Falinska A.
        • Younkin L.H.
        • Younkin S.G.
        • Rowan M.
        • Cleary J.
        • Wallis R.A.
        • Sun G.Y.
        • Cole G.
        • Frautschy S.
        • Anwyl R.
        • Ashe K.H.
        Cyclooxygenase-2 inhibition improves amyloid-beta-mediated suppression of memory and synaptic plasticity.
        Brain. 2008; 131: 651-664
        • Vlad S.C.
        • Miller D.R.
        • Kowall N.W.
        • Felson D.T.
        Protective effects of NSAIDs on the development of Alzheimer disease.
        Neurology. 2008; 70: 1672-1677
        • Akbar M.
        • Calderon F.
        • Wen Z.
        • Kim H.Y.
        Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival.
        Proc. Natl. Acad. Sci. USA. 2005; 102: 10858-10863
        • Calon F.
        • Lim G.P.
        • Yang F.
        • Morihara T.
        • Teter B.
        • Ubeda O.
        • Rostaing P.
        • Triller A.
        • Salem Jr, N.
        • Ashe K.H.
        • Frautschy S.A.
        • Cole G.M.
        Docosahexaenoic acid protects from dendritic pathology in an Alzheimer's disease mouse model.
        Neuron. 2004; 43: 633-645
        • Rao J.S.
        • Ertley R.N.
        • Lee H.J.
        • DeMar Jr, J.C.
        • Arnold J.T.
        • Rapoport S.I.
        • Bazinet R.P.
        n-3 polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism.
        Mol. Psychiatry. 2007; 12: 36-46
        • Neeper S.A.
        • Gómez-Pinilla F.
        • Choi J.
        • Cotman C.W.
        Exercise and brain neurotrophins.
        Nature. 1995; 373: 109
        • Lee J.M.
        • Johnson J.A.
        An important role of Nrf2-ARE pathway in the cellular defense mechanism.
        J. Biochem. Mol. Biol. 2004; 37: 139-143
        • Mori T.A.
        • Puddey I.B.
        • Burke V.
        • Croft K.D.
        • Dunstan D.W.
        • Rivera J.H.
        • Beilin L.J.
        Effect of omega 3 fatty acids on oxidative stress in humans: GC–MS measurement of urinary F2-isoprostane excretion.
        Redox. Rep. 2000; 5: 45-46
        • Praticò D.
        • Lee V.M.Y.
        • Trojanowski J.Q.
        • Rokach J.
        • Fitzgerald G.A.
        Increased F2-isoprostanes in Alzheimer's disease: evidence for enhanced lipid peroxidation in vivo.
        FASEB J. 1998; 12: 1777-1783
        • Nourooz-Zadeh J.
        • Liu E.H.C.
        • Yhlen B.
        • Anggard E.E.
        • Halliwell B.
        F4-Isoprostanes as specific marker of docosahexaenoic acid peroxidation in Alzheimer's disease.
        J. Neurochem. 1999; 72: 734-740
        • Reich E.E.
        • Markesbery W.R.
        • Roberts 2nd, L.J.
        • Swift L.L.
        • Morrow J.D.
        • Montine T.J.
        Brain regional quantification of F-ring and D-/E-ring isoprostanes and neuroprostanes in Alzheimer's disease.
        Am. J. Pathol. 2001; 158: 293-297
        • Bazan N.G.
        Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress.
        Brain Pathol. 2005; 15: 159-166
        • Calderon F.
        • Kim H.Y.
        Role of RXR in neurite outgrowth induced by docosahexaenoic acid.
        Prostaglandins Leukot. Essent. Fatty Acids. 2007; 77: 227-232
        • Risner M.E.
        • Saunders A.M.
        • Altman J.F.
        • Ormandy G.C.
        • Craft S.
        • Foley I.M.
        • Zvartau-Hind M.E.
        • Hosford D.A.
        • Roses A.D.
        Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer's disease.
        Pharmacogenom. J. 2006;
        • Heller A.R.
        • Rossler S.
        • Litz R.J.
        • Stehr S.N.
        • Heller S.C.
        • Koch R.
        • Koch T.
        Omega-3 fatty acids improve the diagnosis-related clinical outcome*.
        Crit. Care Med. 2006; (Publish Ahead of Print)
        • Arendash G.W.
        • Jensen M.T.
        • Salem Jr, N.
        • Hussein N.
        • Cracchiolo J.
        • Dickson A.
        • Leighty R.
        • Potter H.
        A diet high in omega-3 fatty acids does not improve or protect cognitive performance in Alzheimer's transgenic mice.
        Neuroscience. 2007; 149: 286-302
        • Ma Q.L.
        • Teter B.
        • Ubeda O.J.
        • Morihara T.
        • Dhoot D.
        • Nyby M.D.
        • Tuck M.L.
        • Frautschy S.A.
        • Cole G.M.
        Omega-3 fatty acid docosahexaenoic acid increases SorLA/LR11, a sorting protein with reduced expression in sporadic Alzheimer's disease (AD): relevance to AD prevention.
        J. Neurosci. 2007; 27: 14299-14307
        • Sager K.L.
        • Wuu J.
        • Leurgans S.E.
        • Rees H.D.
        • Gearing M.
        • Mufson E.J.
        • Levey A.I.
        • Lah J.J.
        Neuronal LR11/sorLA expression is reduced in mild cognitive impairment.
        Ann. Neurol. 2007; 62: 640-647
        • Rogaeva E.
        • Meng Y.
        • Lee J.H.
        • Gu Y.
        • Kawarai T.
        • Zou F.
        • Katayama T.
        • Baldwin C.T.
        • Cheng R.
        • Hasegawa H.
        • Chen F.
        • Shibata N.
        • Lunetta K.L.
        • Pardossi-Piquard R.
        • Bohm C.
        • Wakutani Y.
        • Cupples L.A.
        • Cuenco K.T.
        • Green R.C.
        • Pinessi L.
        • Rainero I.
        • Sorbi S.
        • Bruni A.
        • Duara R.
        • Friedland R.P.
        • Inzelberg R.
        • Hampe W.
        • Bujo H.
        • Song Y.Q.
        • Andersen O.M.
        • Willnow T.E.
        • Graff-Radford N.
        • Petersen R.C.
        • Dickson D.
        • Der S.D.
        • Fraser P.E.
        • Schmitt-Ulms G.
        • Younkin S.
        • Mayeux R.
        • Farrer L.A.
        • St George-Hyslop P.
        The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease.
        Nat. Genet. 2007; 39: 168-177
        • Meng Y.
        • Lee J.H.
        • Cheng R.
        • St George-Hyslop P.
        • Mayeux R.
        • Farrer L.A.
        Association between SORL1 and Alzheimer's disease in a genome-wide study.
        Neuroreport. 2007; 18: 1761-1764
        • Lee J.H.
        • Cheng R.
        • Schupf N.
        • Manly J.
        • Lantigua R.
        • Stern Y.
        • Rogaeva E.
        • Wakutani Y.
        • Farrer L.
        • St George-Hyslop P.
        • Mayeux R.
        The association between genetic variants in SORL1 and Alzheimer disease in an urban, multiethnic, community-based cohort.
        Arch. Neurol. 2007; 64: 501-506
        • Lee J.H.
        • Cheng R.
        • Honig L.S.
        • Vonsattel J.P.
        • Clark L.
        • Mayeux R.
        Association between genetic variants in SORL1 and autopsy-confirmed Alzheimer disease.
        Neurology. 2008; 70: 887-889
        • Ma Q.-L.
        • Galasko D.R.
        • Ringman J.M.
        • Vinters H.V.
        • Edland S.D.
        • Pomakian J.
        • Ubeda O.J.
        • Rosario E.R.
        • Teter B.
        • Frautschy S.A.
        • Cole G.M.
        Reduction of SorLa/LR11, a sorting protein limiting beta-amyloid production, in Alzheimer disease cerebrospinal fluid.
        Arch. Neurol. 2009; 66: 1-10
        • Puskas L.G.
        • Kitajka K.
        • Nyakas C.
        • Barcelo-Coblijn G.
        • Farkas T.
        Short-term administration of omega 3 fatty acids from fish oil results in increased transthyretin transcription in old rat hippocampus.
        Proc. Natl. Acad. Sci. USA. 2003;
        • Zhao L.
        • Teter B.
        • Morihara T.
        • Lim G.P.
        • Ambegaokar S.S.
        • Ubeda O.J.
        • Frautschy S.A.
        • Cole G.M.
        Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer's disease intervention.
        J. Neurosci. 2004; 24: 11120-11126
        • Florent S.
        • Malaplate-Armand C.
        • Youssef I.
        • Kriem B.
        • Koziel V.
        • Escanye M.C.
        • Fifre A.
        • Sponne I.
        • Leininger-Muller B.
        • Olivier J.L.
        • Pillot T.
        • Oster T.
        Docosahexaenoic acid prevents neuronal apoptosis induced by soluble amyloid-beta oligomers.
        J. Neurochem. 2006; 96: 385-395
        • Ma Q.L.
        • Yang F.
        • Calon F.
        • Ubeda O.J.
        • Hansen J.E.
        • Weisbart R.H.
        • Beech W.
        • Frautschy S.A.
        • Cole G.M.
        p21-activated kinase-aberrant activation and translocation in Alzheimer disease pathogenesis.
        J. Biol. Chem. 2008; 283: 14132-14143
        • Counts S.E.
        • Nadeem M.
        • Lad S.P.
        • Wuu J.
        • Mufson E.J.
        Differential expression of synaptic proteins in the frontal and temporal cortex of elderly subjects with mild cognitive impairment.
        J. Neuropathol. Exp. Neurol. 2006; 65: 592-601
        • Yang D.Y.
        • Pan H.C.
        • Yen Y.J.
        • Wang C.C.
        • Chuang Y.H.
        • Chen S.Y.
        • Lin S.Y.
        • Liao S.L.
        • Raung S.L.
        • Wu C.W.
        • Chou M.C.
        • Chiang A.N.
        • Chen C.J.
        Detrimental effects of post-treatment with fatty acids on brain injury in ischemic rats.
        Neurotoxicology. 2007; 28: 1220-1229
        • Gamblin T.C.
        • King M.E.
        • Kuret J.
        • Berry R.W.
        • Binder L.I.
        Oxidative regulation of fatty acid-induced tau polymerization.
        Biochemistry. 2000; 39: 14203-14210
        • Long E.K.
        • Murphy T.C.
        • Leiphon L.J.
        • Watt J.
        • Morrow J.D.
        • Milne G.L.
        • Howard J.R.
        • Picklo Sr, M.J.
        Trans-4-hydroxy-2-hexenal is a neurotoxic product of docosahexaenoic (22:6; n-3) acid oxidation.
        J. Neurochem. 2008; 105: 714-724
        • Gylys K.H.
        • Fein J.A.
        • Yang F.
        • Wiley D.J.
        • Miller C.A.
        • Cole G.M.
        Synaptic changes in Alzheimer's disease: increased amyloid-beta and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence.
        Am. J. Pathol. 2004; 165: 1809-1817
        • Brenna J.T.
        • Diau G.Y.
        The influence of dietary docosahexaenoic acid and arachidonic acid on central nervous system polyunsaturated fatty acid composition.
        Prostaglandins Leukot. Essent. Fatty Acids. 2007; 77: 247-250
        • Cole G.M.
        • Frautschy S.A.
        Docosahexaenoic acid protects from amyloid and dendritic pathology in an Alzheimer's disease mouse model.
        Nutr. Health. 2006; 18: 249-259
        • Kotani S.
        • Sakaguchi E.
        • Warashina S.
        • Matsukawa N.
        • Ishikura Y.
        • Kiso Y.
        • Sakakibara M.
        • Yoshimoto T.
        • Guo J.
        • Yamashima T.
        Dietary supplementation of arachidonic and docosahexaenoic acids improves cognitive dysfunction.
        Neurosci. Res. 2006; 56: 159-164
        • Freund-Levi Y.
        • Eriksdotter-Jonhagen M.
        • Cederholm T.
        • Basun H.
        • Faxen-Irving G.
        • Garlind A.
        • Vedin I.
        • Vessby B.
        • Wahlund L.O.
        • Palmblad J.
        Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial.
        Arch. Neurol. 2006; 63: 1402-1408
        • Chiu C.C.
        • Su K.P.
        • Cheng T.C.
        • Liu H.C.
        • Chang C.J.
        • Dewey M.E.
        • Stewart R.
        • Huang S.Y.
        The effects of omega-3 fatty acids monotherapy in Alzheimer's disease and mild cognitive impairment: a preliminary randomized double-blind placebo-controlled study.
        Prog. Neuropsychopharmacol. Biol. Psychiatry. 2008; 32: 1538-1544
      1. L. Shinto, J. Quinn, T. Montine, S. Baldauf-Wagner, B. Oken, D. Bourdette, J. Kaye, Omega-3 fatty acids and lipoic acid in Alzheimer's disease. Neurology 70 (2008) A393.

        • Harris W.S.
        • Kris-Etherton P.M.
        • Harris K.A.
        Intakes of long-chain omega-3 fatty acid associated with reduced risk for death from coronary heart disease in healthy adults.
        Curr. Atheroscler. Rep. 2008; 10: 503-509
        • Griffin B.A.
        How relevant is the ratio of dietary n-6 to n-3 polyunsaturated fatty acids to cardiovascular disease risk? Evidence from the OPTILIP study.
        Curr. Opin. Lipidol. 2008; 19: 57-62
        • Kalmijn S.
        • Feskens E.
        • Launer L.
        • Kromhout D.
        Polyunsaturated fatty acids, antioxidants and cognitive function in very old men.
        Am. J. Epidemiol. 1997; 145: 33-41
        • Kalmijn S.
        • Launer L.J.
        • Ott A.
        • Witteman J.C.
        • Hofman A.
        • Breteler M.M.
        Dietary fat intake and the risk of incident dementia in the Rotterdam Study.
        Ann. Neurol. 1997; 42: 776-782
        • Morris M.C.
        • Evans D.A.
        • Bienias J.L.
        • Tangney C.C.
        • Bennett D.A.
        • Wilson R.S.
        • Aggarwal N.
        • Schneider J.
        Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease.
        Arch. Neurol. 2003; 60: 940-946
        • Kalmijn S.
        • van Boxtel M.P.
        • Ocke M.
        • Verschuren W.M.
        • Kromhout D.
        • Launer L.J.
        Dietary intake of fatty acids and fish in relation to cognitive performance at middle age.
        Neurology. 2004; 62: 275-280
        • Morris M.C.
        • Evans D.A.
        • Tangney C.C.
        • Bienias J.L.
        • Wilson R.S.
        Fish consumption and cognitive decline with age in a large community study.
        Arch. Neurol. 2005; 62: 1849-1853
        • Huang T.L.
        • Zandi P.P.
        • Tucker K.L.
        • Fitzpatrick A.L.
        • Kuller L.H.
        • Fried L.P.
        • Burke G.L.
        • Carlson M.C.
        Benefits of fatty fish on dementia risk are stronger for those without APOE epsilon4.
        Neurology. 2005; 65: 1409-1414
        • Nurk E.
        • Drevon C.A.
        • Refsum H.
        • Solvoll K.
        • Vollset S.E.
        • Nygard O.
        • Nygaard H.A.
        • Engedal K.
        • Tell G.S.
        • Smith A.D.
        Cognitive performance among the elderly and dietary fish intake: the Hordaland Health Study.
        Am. J. Clin. Nutr. 2007; 86: 1470-1478
        • Barberger-Gateau P.
        • Raffaitin C.
        • Letenneur L.
        • Berr C.
        • Tzourio C.
        • Dartigues J.F.
        • Alperovitch A.
        Dietary patterns and risk of dementia: the Three-City cohort study.
        Neurology. 2007; 69: 1921-1930
        • van Gelder B.M.
        • Tijhuis M.
        • Kalmijn S.
        • Kromhout D.
        Fish consumption, n-3 fatty acids, and subsequent 5-y cognitive decline in elderly men: the Zutphen Elderly Study.
        Am. J. Clin. Nutr. 2007; 85: 1142-1147
        • Conquer J.A.
        • Tierney M.C.
        • Zecevic J.
        • Bettger W.J.
        • Fisher R.H.
        Fatty acid analysis of blood plasma of patients with Alzheimer's disease, other types of dementia, and cognitive impairment.
        Lipids. 2000; 35: 1305-1312
        • Heude B.
        • Ducimetiere P.
        • Berr C.
        Cognitive decline and fatty acid composition of erythrocyte membranes—The EVA Study.
        Am. J. Clin. Nutr. 2003; 77: 803-808
        • Laurin D.
        • Verreault R.
        • Lindsay J.
        • Dewailly E.
        • Holub B.J.
        Omega-3 fatty acids and risk of cognitive impairment and dementia.
        J. Alzheimers Dis. 2003; 5: 315-322
        • Dullemeijer C.
        • Durga J.
        • Brouwer I.A.
        • van de Rest O.
        • Kok F.J.
        • Brummer R.J.
        • van Boxtel M.P.
        • Verhoef P.
        n 3 fatty acid proportions in plasma and cognitive performance in older adults.
        Am. J. Clin. Nutr. 2007; 86: 1479-1485
        • Beydoun M.A.
        • Kaufman J.S.
        • Satia J.A.
        • Rosamond W.
        • Folsom A.R.
        Plasma n-3 fatty acids and the risk of cognitive decline in older adults: the Atherosclerosis Risk in Communities Study.
        Am. J. Clin. Nutr. 2007; 85: 1103-1111
        • Cherubini A.
        • Andres-Lacueva C.
        • Martin A.
        • Lauretani F.
        • Iorio A.D.
        • Bartali B.
        • Corsi A.
        • Bandinelli S.
        • Mattson M.P.
        • Ferrucci L.
        Low plasma n-3 fatty acids and dementia in older persons: the InCHIANTI study.
        J. Gerontol. A Biol. Sci. Med. Sci. 2007; 62: 1120-1126
        • Tully A.M.
        • Roche H.M.
        • Doyle R.
        • Fallon C.
        • Bruce I.
        • Lawlor B.
        • Coakley D.
        • Gibney M.J.
        Low serum cholesteryl ester-docosahexaenoic acid levels in Alzheimer's disease: a case–control study.
        Br. J. Nutr. 2003; 89: 483-489
        • Tassoni D.
        • Kaur G.
        • Weisinger R.S.
        • Sinclair A.J.
        The role of eicosanoids in the brain.
        Asia Pac. J. Clin. Nutr. 2008; 17: 220-228
        • Rao J.S.
        • Ertley R.N.
        • DeMar Jr, J.C.
        • Rapoport S.I.
        • Bazinet R.P.
        • Lee H.J.
        Dietary n-3 PUFA deprivation alters expression of enzymes of the arachidonic and docosahexaenoic acid cascades in rat frontal cortex.
        Mol. Psychiatry. 2007; 12: 151-157
        • Cao D.
        • Yang B.
        • Hou L.
        • Xu J.
        • Xue R.
        • Sun L.
        • Zhou C.
        • Liu Z.
        Chronic daily administration of ethyl docosahexaenoate protects against gerbil brain ischemic damage through reduction of arachidonic acid liberation and accumulation.
        J. Nutr. Biochem. 2007; 18: 297-304
        • Wu A.
        • Ying Z.
        • Gomez-Pinilla F.
        Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats.
        J. Neurotrauma. 2004; 21: 1457-1467
        • Yavin E.
        • Brand A.
        • Green P.
        Docosahexaenoic acid abundance in the brain: a biodevice to combat oxidative stress.
        Nutr. Neurosci. 2002; 5: 149-157
        • Hashimoto M.
        • Tanabe Y.
        • Fujii Y.
        • Kikuta T.
        • Shibata H.
        • Shido O.
        Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid beta-infused rats.
        J. Nutr. 2005; 135: 549-555
        • Hossain M.S.
        • Hashimoto M.
        • Gamoh S.
        • Masumura S.
        Antioxidative effects of docosahexaenoic acid in the cerebrum versus cerebellum and brainstem of aged hypercholesterolemic rats.
        J. Neurochem. 1999; 72: 1133-1138
        • Lukiw W.J.
        • Cui J.G.
        • Marcheselli V.L.
        • Bodker M.
        • Botkjaer A.
        • Gotlinger K.
        • Serhan C.N.
        • Bazan N.G.
        A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease.
        J. Clin. Invest. 2005; 115: 2774-2783
        • Innis S.M.
        Dietary (n-3) fatty acids and brain development.
        J. Nutr. 2007; 137: 855-859
        • Tsukada H.
        • Kakiuchi T.
        • Fukumoto D.
        • Nishiyama S.
        • Koga K.
        Docosahexaenoic acid (DHA) improves the age-related impairment of the coupling mechanism between neuronal activation and functional cerebral blood flow response: a PET study in conscious monkeys.
        Brain Res. 2000; 862: 180-186
        • Pifferi F.
        • Jouin M.
        • Alessandri J.M.
        • Haedke U.
        • Roux F.
        • Perriere N.
        • Denis I.
        • Lavialle M.
        • Guesnet P.
        n-3 Fatty acids modulate brain glucose transport in endothelial cells of the blood-brain barrier.
        Prostaglandins Leukot. Essent. Fatty Acids. 2007; 77: 279-286
        • Hashimoto M.
        • Hossain S.
        • Shimada T.
        • Shido O.
        Docosahexaenoic acid-induced protective effect against impaired learning in amyloid beta-infused rats is associated with increased synaptosomal membrane fluidity.
        Clin. Exp. Pharmacol. Physiol. 2006; 33: 934-939
        • Litman B.J.
        • Niu S.L.
        • Polozova A.
        • Mitchell D.C.
        The role of docosahexaenoic acid containing phospholipids in modulating G protein-coupled signaling pathways: visual transduction.
        J. Mol. Neurosci. 2001; 16 (discussion 279–284): 237-242
        • Gani O.A.
        • Sylte I.
        Molecular recognition of Docosahexaenoic acid by peroxisome proliferator-activated receptors and retinoid-X receptor alpha.
        J. Mol. Graph Model. 2008;
        • Sahlin C.
        • Pettersson F.E.
        • Nilsson L.N.
        • Lannfelt L.
        • Johansson A.S.
        Docosahexaenoic acid stimulates non-amyloidogenic APP processing resulting in reduced Abeta levels in cellular models of Alzheimer's disease.
        Eur. J. Neurosci. 2007; 26: 882-889
        • Lim G.P.
        • Calon F.
        • Morihara T.
        • Yang F.
        • Teter B.
        • Ubeda O.
        • Salem Jr, N.
        • Frautschy S.A.
        • Cole G.M.
        A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model.
        J. Neurosci. 2005; 25: 3032-3040
        • Hooijmans C.R.
        • Rutters F.
        • Dederen P.J.
        • Gambarota G.
        • Veltien A.
        • van Groen T.
        • Broersen L.M.
        • Lutjohann D.
        • Heerschap A.
        • Tanila H.
        • Kiliaan A.J.
        Changes in cerebral blood volume and amyloid pathology in aged Alzheimer APP/PS1 mice on a docosahexaenoic acid (DHA) diet or cholesterol enriched Typical Western Diet (TWD).
        Neurobiol. Dis. 2007; 28: 16-29
      2. B. Berg, S. Perez, O. Lazarov, M. Nadeem, S. Sisodia, K. Moore, E. Mufson, The dietary omega-3 fatty acid DHA reduces cortical and striatal β-amyloid load in APPswe/PS1ΔE9 transgenic mice. Society for Neuroscience, 37 Abs. 857.6, 2007.

        • Van de Rest O.
        • Geleijnse J.
        • Kok F.
        • van Staveren W.
        • Dullemeijer C.
        • OldeRikkert M.
        • Beekman A.
        • de Groot L.
        Effect of fish oil on cognitive performance in older subjects: a randomized controlled trial.
        Neurology. 2008; 71: 430-438
        • Dangour A.D.
        • Clemens F.
        • Elbourne D.
        • Fasey N.
        • Fletcher A.E.
        • Hardy P.
        • Holder G.E.
        • Huppert F.A.
        • Knight R.
        • Letley L.
        • Richards M.
        • Truesdale A.
        • Vickers M.
        • Uauy R.
        A randomised controlled trial investigating the effect of n-3 long-chain polyunsaturated fatty acid supplementation on cognitive and retinal function in cognitively healthy older people: the Older People And n-3 Long-chain polyunsaturated fatty acids (OPAL) study protocol [ISRCTN72331636].
        Nutr. J. 2006; 5: 20