Advertisement
Research Article| Volume 85, ISSUE 6, P345-351, December 2011

Dietary long-chain n-3 PUFA, gut microbiota and fat mass in early postnatal piglet development—exploring a potential interplay

Published:August 31, 2011DOI:https://doi.org/10.1016/j.plefa.2011.08.004

      Abstract

      Dietary n-3PUFA and gut bacteria, particularly Bacteroidetes, have been suggested to be related to adiposity. We investigated if n-3PUFA affected fat storage and cecal bacteria in piglets. Twenty-four 4-day-old piglets were allocated to formula rich in n-3PUFA (∼3E%) from fish oil (FO) or n-6PUFA from sunflower oil (SO) for 14 days. We assessed body weight, fat accumulation by dual-energy X-ray absorptiometry and microbial molecular fingerprints. Dietary PUFA-composition was reflected in higher erythrocyte n-3PUFA in the FO- than the SO-group (P<0.001). Principal component analysis revealed group differences in the overall microbiotic composition, which involved a larger Bacteroides community in the SO-group (P=0.02). There was no significant difference in body fat percentage and no relationship between fat accumulation and gut Bacteroides. Hence, this study does not support an impact of n-3PUFA or microbiota on fat accumulation during the postnatal maturation period. The impact of dietary PUFA on the gut Bacteroides warrants further investigation.

      Abbreviations:

      DEXA (dual-energy X-ray absorptiometry), FO (fish oil), LCPUFA (long-chain PUFA), MUFA (monounsaturated fatty acids), PCA (principal component analysis), RBC (erythrocytes), SFA (saturated fatty acids), SO (sunflower oil), T-RF (terminal-restriction fragment)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ley R.E.
        • Backhed F.
        • Turnbaugh P.
        • Lozupone C.A.
        • Knight R.D.
        • Gordon J.I.
        Obesity alters gut microbial ecology.
        Proceedings of the National Academy of Sciences. 2005; 102: 11070-11075
        • Ley R.E.
        • Turnbaugh P.J.
        • Klein S.
        • Gordon J.I.
        Microbial ecology: human gut microbes associated with obesity.
        Nature. 2006; 444: 1022-1023
        • Turnbaugh P.J.
        • Ley R.E.
        • Mahowald M.A.
        • Magrini V.
        • Mardis E.R.
        • Gordon J.I.
        An obesity-associated gut microbiome with increased capacity for energy harvest.
        Nature. 2006; 444: 1027-1131
      1. P.J. Turnbaugh, M. Hamady, T. Yatsunenko et al. A core gut microbiome in obese and lean twins, Nature, (2008).

        • Guo X.
        • Xia X.
        • Tang R.
        • Zhou J.
        • Zhao H.
        • Wang K.
        Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs.
        Letters in Applied Microbiology. 2008; 47: 367-373
        • Marteau P.
        • Pochart P.
        • Dore J.
        • Bera-Maillet C.
        • Bernalier A.
        • Corthier G.
        Comparative Study of Bacterial Groups within the Human Cecal and Fecal Microbiota.
        Applied and Environmental Microbiology. 2001; 67: 4939-4942
        • Nielsen S.
        • Nielsen D.S.
        • Lauritzen L.
        • Jakobsen M.
        • Michaelsen K.F.
        Impact of diet on the intestinal microbiota in 10-month-old infants.
        Journal of Pediatric Gastroenterology and Nutrition. 2007; 44: 613-618
        • Baillie R.A.
        • Takada R.
        • Nakamura M.
        • Clarke S.D.
        Coordinate induction of peroxisomal acyl-CoA oxidase and UCP-3 by dietary fish oil: a mechanism for decreased body fat deposition.
        Prostaglandins, Leukotrienes and Essential Fatty Acids. 1999; 60: 351-356
        • Ruzickova J.
        • Rossmeisl M.
        • Flachs P.
        • et al.
        Reduction of adiposity in C57BL/6J mice by dietary omega-3 polyunsaturated fatty acids of marine origin.
        Diabetologia. 2004; 47: 662
        • Perez-Matute P.
        • Perez-Echarri N.
        • Martinez J.A.
        • Marti A.
        • Moreno-Aliaga M.J.
        Eicosapentaenoic acid actions on adiposity and insulin resistance in control and high-fat-fed rats: role of apoptosis, adiponectin and tumour necrosis factor-alpha.
        British Journal of Nutrition. 2007; 97: 389-398
        • Mori T.
        • Kondo H.
        • Hase T.
        • Tokimitsu I.
        • Murase T.
        Dietary fish oil upregulates intestinal lipid metabolism and reduces body weight gain in C57BL/6J mice.
        Journal of Nutrition. 2007; 137: 2629-2634
        • Ailhaud G.
        • Guesnet P.
        • Cunnane S.C.
        An emerging risk factor for obesity: does disequilibrium of polyunsaturated fatty acid metabolism contribute to excessive adipose tissue development?.
        British Journal of Nutrition. 2008; 100: 461-470
        • Micallef M.
        • Munro I.
        • Phang M.
        • Garg M.
        Plasma n-3 polyunsaturated fatty acids are negatively associated with obesity.
        British Journal of Nutrition. 2009; 102: 1370-1374
        • Xu R.J.
        Composition of porcine milk.
        in: Xu R.J. Cranwell P.D. The Neonatal Pig. Nottingham University Press, 2003 (pp. 213–247)
        • Picaud J.C.
        • Rigo J.
        • Nyamugabo K.
        • Milet J.
        • Senterre J.
        Evaluation of dual-energy X-ray absorptiometry for body-composition assessment in piglets and term human neonates.
        American Journal of Clinical Nutrition. 1996; 63: 157-163
        • Lauritzen L.
        • Jorgensen M.
        • Mikkelsen T.
        • et al.
        Maternal fish oil supplementation in lactation: effect on visual acuity and n-3 fatty acid content of infant erythrocytes.
        Lipids. 2004; 39: 195-206
        • Folch J.
        • Lees M.
        • Stanley G.H.S.
        A simple method for the isolation and purification of total lipides from animal tissues.
        Journal of Biological Chemistry. 1957; 226: 497-509
        • Christopherson S.W.
        • Glass R.L.
        Preparation of milk fat methyl esters by alcoholysis in an essentially nonalcoholic solution.
        Journal of Dairy Science. 1969; 52: 1289-1290
        • Molbak L.
        • Thomsen L.E.
        • Jensen T.K.
        • Knudsen K.E.B.
        • Boye M.
        Increased amount of Bifidobacterium thermacidophilum and Megasphaera elsdenii in the colonic microbiota of pigs fed a swine dysentery preventive diet containing chicory roots and sweet lupine.
        Journal of Applied Microbiology. 2007; 103: 1853-1867
        • Matsuki T.
        • Watanabe K.
        • Fujimoto J.
        • et al.
        Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces.
        Applied and Environmental Microbiology. 2002; 68: 5445-5451
        • Shyu C.
        • Soule T.
        • Bent S.
        • Foster J.
        • Forney L.
        MiCA: a web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes.
        Microbial Ecology. 2007; 53: 562-570
        • Thompson L.
        • Spiller R.C.
        Impact of polyunsaturated fatty-acids on human colonic bacterial metabolism—an in-vitro and in-vivo study.
        British Journal of Nutrition. 1995; 74: 733-741
        • Kuda T.
        • Enomoto T.
        • Yano T.
        • Fujii T.
        Cecal environment and TBARS level in mice fed corn oil, beef tallow and menhaden fish oil.
        Journal of Nutritional Science and Vitaminology. 2000; 46: 65-70
        • Hekmatdoost A.
        • Feizabadi M.M.
        • Djazayery A.
        • et al.
        The effect of dietary oils on cecal microflora in experimental colitis in mice.
        Indian Journal of Gastroenterology. 2008; 27: 186-189
        • Bomba A.
        • Nemcova R.
        • Gancarcikova S.
        • et al.
        The influence of omega-3 polyunsaturated fatty acids (omega-3 pufa) on lactobacilli adhesion to the intestinal mucosa and on immunity in gnotobiotic piglets.
        Berl Munch Tierarztl Wochenschr. 2003; 116 (July–August): 312-316
        • Ringo E.
        • Bendiksen H.R.
        • Gausen S.J.
        • Sundsfjord A.
        • Olsen R.E.
        The effect of dietary fatty acids on lactic acid bacteria associated with the epithelial mucosa and from faecalia of Arctic charr, Salvelinus alpinus (L.).
        Journal of Applied Microbiology. 1998; 85: 855-864
        • Geier M.S.
        • Torok V.A.
        • Allison G.E.
        • et al.
        Dietary omega-3 polyunsaturated fatty acid does not influence the intestinal microbial communities of broiler chickens.
        Poultry Science. 2009; 88: 2399-2405
        • Hainault I.
        • Carlotti M.
        • Hajduch E.
        • Guichard C.
        • Lavau M.
        Fish-oil in a high lard diet prevents obesity, hyperlipemia, and adipocyte insulin-resistance in rats.
        Annals of the New York Academy of Sciences. 1993; 683: 98-101
        • Belzung F.
        • Raclot T.
        • Groscolas R.
        Fish-oil n-3 fatty-acids selectively limit the hypertrophy of abdominal fat depots in growing rats fed high-fat diets.
        American Journal of Physiology. 1993; 264: R1111-R1118
        • Takahashi Y.
        • Ide T.
        Dietary n-3 fatty acids affect mRNA level of brown adipose tissue uncoupling protein 1, and white adipose tissue leptin and glucose transporter 4 in the rat.
        British Journal of Nutrition. 2000; 84: 175-184
        • Parrish C.C.
        • Pathy D.A.
        • Angel A.
        Dietary fish oils limit adipose-tissue hypertrophy in rats.
        Metabolism—Clinical and Experimental. 1990; 39: 217-219
        • Hun C.S.
        • Hasegawa K.
        • Kawabata T.
        • Kato M.
        • Shimokawa T.
        • Kagawa Y.
        Increased uncoupling protein2 mRNA in white adipose tissue, and decrease in leptin, visceral fat, blood glucose, and cholesterol in KK-A(y) mice fed with eicosapentaenoic and docosahexaenoic acids in addition to linolenic acid.
        Biochemical and Biophysical Research Communications. 1999; 259: 85-90
        • Jang I.S.
        • Hwang D.Y.
        • Chae K.R.
        • et al.
        Role of dietary fat type in the development of adiposity from dietary obesity-susceptible Sprague?Dawley rats.
        British Journal of Nutrition. 2003; 89: 429-437
        • Huber J.
        • Loffler M.
        • Bilban M.
        • et al.
        Prevention of high-fat diet-induced adipose tissue remodeling in obese diabetic mice by n-3 polyunsaturated fatty acids.
        International Journal of Obesity. 2007; 31: 1004-1013
        • Huang X.F.
        • Xin X.
        • McLennan P.
        • Storlien L.
        Role of fat amount and type in ameliorating diet-induced obesity: insights at the level of hypothalamic arcuate nucleus leptin receptor, neuropeptide Y and pro-opiomelanocortin mRNA expression.
        Diabetes Obesity & Metabolism. 2004; 6: 35-44
        • Todoric J.
        • Loffler M.
        • Huber J.
        • et al.
        Adipose tissue inflammation induced by high-fat diet in obese diabetic mice is prevented by n-3 polyunsaturated fatty acids.
        Diabetologia. 2006; 49: 2109-2119
        • Kratz M.
        • Callahan H.S.
        • Yang P.Y.
        • Matthys C.C.
        • Weigle D.S.
        Dietary n-3-polyunsaturated fatty acids and energy balance in overweight or moderately obese men and women: a randomized controlled trial.
        Nutrition and Metabolism. 2009; 6
        • Krebs J.D.
        • Browning L.M.
        • Mclean N.K.
        • et al.
        Additive benefits of long-chain n-3 polyunsaturated fatty acids and weight-loss in the management of cardiovascular disease risk in overweight hyperinsulinaemic women.
        International Journal of Obesity. 2006; 30: 1535-1544
        • Kabir M.
        • Skurnik G.
        • Naour N.
        • et al.
        Treatment for 2 mo with n-3 polyunsaturated fatty acids reduces adiposity and some atherogenic factors but does not improve insulin sensitivity in women with type 2 diabetes: a randomized controlled study.
        American Journal of Clinical Nutrition. 2007; 86: 1670-1679
        • Hill A.M.
        • Buckley J.D.
        • Murphy K.J.
        • Howe P.R.C.
        Combining fish-oil supplements with regular aerobic exercise improves body composition and cardiovascular disease risk factors.
        American Journal of Clinical Nutrition. 2007; 85: 1267-1274
        • Rokling-Andersen M.H.
        • Rustan A.C.
        • Wensaas A.J.
        • et al.
        Marine n-3 fatty acids promote size reduction of visceral adipose depots, without altering body weight and composition, in male Wistar rats fed a high-fat diet.
        British Journal of Nutrition. 2009; 102: 995-1006
        • Okuno M.
        • Kajiwara K.
        • Imai S.
        • et al.
        Perilla oil prevents the excessive growth of visceral adipose tissue in rats by down-regulating adipocyte differentiation.
        Journal of Nutrition. 1997; 127: 1752-1757
        • Helland I.B.
        • Saugstad O.D.
        • Smith L.
        • et al.
        Similar effects on infants of n-3 and n-6 fatty acids supplementation to pregnant and lactating women.
        Pediatrics. 2001; 108: e82
        • Eckburg P.B.
        • Bik E.M.
        • Bernstein C.N.
        • et al.
        Diversity of the human intestinal microbial flora.
        Science. 2005; 308: 1635-1638
        • Ley R.E.
        • Hamady M.
        • Lozupone C.
        • et al.
        Evolution of mammals and their gut microbes.
        Science. 2008; 320: 1647-1651
        • Leser T.D.
        • Amenuvor J.Z.
        • Jensen T.K.
        • Lindecrona R.H.
        • Boye M.
        • Moller K.
        Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited.
        Applied and Environmental Microbiology. 2002; 68: 673-690
        • Guo X.L.
        • Xia X.J.
        • Tang R.Y.
        • Wang K.N.
        Real-time PCR quantification of the predominant bacterial divisions in the distal gut of Meishan and Landrace pigs.
        Anaerobe. 2008; 14: 224-228
        • Duncan S.H.
        • Lobley G.E.
        • Holtrop G.
        • et al.
        Human colonic microbiota associated with diet, obesity and weight loss.
        International Journal of Obesity. 2008; 32: 1720-1724
        • Hoyles L.
        • McCartney A.L.
        What do we mean when we refer to Bacteroidetes populations in the human gastrointestinal microbiota?.
        Fems Microbiology Letters. 2009; 299: 175-183
        • Reeds P.J.
        • Burrin D.G.
        • Davis T.A.
        • Fiorotto M.A.
        • Mersmann H.J.
        • Pond W.G.
        Growth regulation with particular reference to the pig.
        in: Hollis G.R. Growth of the Pig. CAB International, 1993: 1-32
        • Corl B.A.
        • Oliver S.A.M.
        • Lin X.
        • et al.
        Conjugated linoleic acid reduces body fat accretion and lipogenic gene expression in, neonatal pigs fed low- or high-fat formulas.
        Journal of Nutrition. 2008; 138: 449-454
        • Dwyer C.M.
        • Fletcher J.M.
        • Stickland N.C.
        Muscle cellularity and postnatal-growth in the pig.
        Journal of Animal Science. 1993; 71: 3339-3343
        • Dethlefsen L.
        • Huse S.
        • Sogin M.L.
        • Relman D.A.
        The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing.
        Plos Biology. 2008; 6: 2383-2400