Advertisement
Research Article| Volume 85, ISSUE 6, P335-343, December 2011

Heart arachidonic acid is uniquely sensitive to dietary arachidonic acid and docosahexaenoic acid content in domestic piglets

Published:September 01, 2011DOI:https://doi.org/10.1016/j.plefa.2011.08.005

      Abstract

      This study determined the sensitivity of heart and brain arachidonic acid (ARA) and docosahexaenoic acid (DHA) to the dietary ARA level in a dose–response design with constant, high DHA in neonatal piglets. On day 3 of age, pigs were assigned to 1 of 6 dietary formulas varying in ARA/DHA as follows (% fatty acid, FA/FA): (A1) 0.1/1.0; (A2) 0.53/1.0; (A3–D3) 0.69/1.0; (A4) 1.1/1.0; (D2) 0.67/0.62; and (D1) 0.66/0.33. At necropsy (day 28) higher levels of dietary ARA were associated with increased heart and liver ARA, while brain ARA remained unaffected. Dietary ARA had no effect on tissue DHA accretion. Heart was particularly sensitive, with pigs in the intermediate groups having different ARA (A2, 18.6±0.7%; A3, 19.4±1.0%) and a 0.17% increase in dietary ARA resulted in a 0.84% increase in heart ARA. Further investigations are warranted to determine the clinical significance of heart ARA status in developing neonates.

      Abbreviations:

      ARA (arachidonic acid), DHA (docosahexaenoic acid), FA (fatty acid), FAME (FA methyl ester), FR (formula-reared), LCPUFA (long chain polyunsaturated fatty acid), MR (maternal-reared)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rulis A.M.
        Agency Response Letter GRAS Notice No. GRN 000080.
        CFSAN/Office of Premarket Approval, 2001
        • Brenna J.T.
        • Varamini B.
        • Jensen R.G.
        • Diersen-Schade D.A.
        • Boettcher J.A.
        • Arterburn L.M.
        Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide.
        Am. J. Clin. Nutr. 2007; 85: 1457-1464
        • Fleith M.
        • Clandinin M.T.
        Dietary PUFA for preterm and term infants: review of clinical studies.
        Crit. Rev. Food Sci. Nutr. 2005; 45: 205-229
        • Innis S.M.
        Essential fatty acid transfer and fetal development.
        Placenta. 2005; 26: S70-75
        • Carlson S.E.
        Early determinants of development: a lipid perspective.
        Am. J. Clin. Nutr. 2009; 89: 1523S-1529S
        • Ryan A.S.
        • Astwood J.D.
        • Gautier S.
        • Kuratko C.N.
        • Nelson E.B.
        • Salem Jr., N.
        Effects of long-chain polyunsaturated fatty acid supplementation on neurodevelopment in childhood: a review of human studies.
        Prostaglandins Leukot. Essent. Fatty Acids. 2010; 82: 305-314
        • Koletzko B.
        • Cetin I.
        • Brenna J.T.
        Dietary fat intakes for pregnant and lactating women.
        Br. J. Nutr. 2007; 98: 873-877
        • Hoffman D.R.
        • Boettcher J.A.
        • Diersen-Schade D.A.
        Toward optimizing vision and cognition in term infants by dietary docosahexaenoic and arachidonic acid supplementation: a review of randomized controlled trials.
        Prostaglandins Leukot. Essent. Fatty Acids. 2009; 81: 151-158
        • Carlson S.E.
        Docosahexaenoic acid and arachidonic acid in infant development.
        Semin. Neonatol. 2001; 6: 437-449
        • Makrides M.
        • Gibson R.A.
        • McPhee A.J.
        • Collins C.T.
        • Davis P.G.
        • Doyle L.W.
        • Simmer K.
        • Colditz P.B.
        • Morris S.
        • et al.
        Neurodevelopmental outcomes of preterm infants fed high-dose docosahexaenoic acid: a randomized controlled trial.
        J. Am. Med. Assoc. 2009; 301: 175-182
        • Birch E.E.
        • Carlson S.E.
        • Hoffman D.R.
        • Fitzgerald-Gustafson K.M.
        • Fu V.L.
        • Drover J.R.
        • Castaneda Y.S.
        • Minns L.
        • Wheaton D.K.
        • et al.
        The DIAMOND (DHA Intake And Measurement Of Neural Development) Study: a double-masked, randomized controlled clinical trial of the maturation of infant visual acuity as a function of the dietary level of docosahexaenoic acid.
        Am. J. Clin. Nutr. 2010; 91: 848-859
        • Makrides M.
        • Neumann M.A.
        • Byard R.W.
        • Simmer K.
        • Gibson R.A.
        Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants.
        Am. J. Clin. Nutr. 1994; 60: 189-194
        • Huang M.C.
        • Brenna J.T.
        • Chao A.C.
        • Tschanz C.
        • Diersen-Schade D.A.
        • Hung H.C.
        Differential tissue dose responses of (n−3) and (n−6) PUFA in neonatal piglets fed docosahexaenoate and arachidonoate.
        J. Nutr. 2007; 137: 2049-2055
        • Hsieh A.T.
        • Brenna J.T.
        Dietary docosahexaenoic acid but not arachidonic acid influences central nervous system fatty acid status in baboon neonates.
        Prostaglandins Leukot. Essent. Fatty Acids. 2009; 81: 105-110
        • Farquharson J.
        • Jamieson E.C.
        • Logan R.W.
        • Patrick W.J.
        • Howatson A.G.
        • Cockburn F.
        Age- and dietary-related distributions of hepatic arachidonic and docosahexaenoic acid in early infancy.
        Pediatr. Res. 1995; 38: 361-365
        • Boswell K.
        • Koskelo E.K.
        • Carl L.
        • Glaza S.
        • Hensen D.J.
        • Williams K.D.
        • Kyle D.J.
        Preclinical evaluation of single-cell oils that are highly enriched with arachidonic acid and docosahexaenoic acid.
        Food Chem. Toxicol. 1996; 34: 585-593
        • Suarez A.
        • Faus M.J.
        • Gil A.
        Dietary long-chain polyunsaturated fatty acids modify heart, kidney, and lung fatty acid composition in weanling rats.
        Lipids. 1996; 31: 345-348
        • de la Presa-Owens S.
        • Innis S.M.
        • Rioux F.M.
        Addition of triglycerides with arachidonic acid or docosahexaenoic acid to infant formula has tissue- and lipid class-specific effects on fatty acids and hepatic desaturase activities in formula-fed piglets.
        J. Nutr. 1998; 128: 1376-1384
        • Blank C.
        • Neumann M.A.
        • Makrides M.
        • Gibson R.A.
        Optimizing DHA levels in piglets by lowering the linoleic acid to alpha-linolenic acid ratio.
        J. Lipid Res. 2002; 43: 1537-1543
        • Huang M.C.
        • Chao A.
        • Kirwan R.
        • Tschanz C.
        • Peralta J.M.
        • Diersen-Schade D.A.
        • Cha S.
        • Brenna J.T.
        Negligible changes in piglet serum clinical indicators or organ weights due to dietary single-cell long-chain polyunsaturated oils.
        Food Chem. Toxicol. 2002; 40: 453-460
        • Sarkadi-Nagy E.
        • Wijendran V.
        • Diau G.Y.
        • Chao A.C.
        • Hsieh A.T.
        • Turpeinen A.
        • Nathanielsz P.W.
        • Brenna J.T.
        The influence of prematurity and long chain polyunsaturate supplementation in 4-week adjusted age baboon neonate brain and related tissues.
        Pediatr. Res. 2003; 54: 244-252
        • Hsieh A.T.
        • Anthony J.C.
        • Diersen-Schade D.A.
        • Rumsey S.C.
        • Lawrence P.
        • Li C.
        • Nathanielsz P.W.
        • Brenna J.T.
        The influence of moderate and high dietary long chain polyunsaturated fatty acids (LCPUFA) on baboon neonate tissue fatty acids.
        Pediatr. Res. 2007; 61: 537-545
      1. C. Tyburczy, K.S.D. Kothapalli, W.J. Park, B.S. Blank, Y.-C. Liu, J.M. Nauroth, J.P. Zimmer, N. Salem Jr., J.T. Brenna, Growth, clinical chemistry and immune function in domestic piglets fed varying ratios of arachidonic acid and DHA, Br.J. Nutr., in press, doi:10.1017/S000711451100359X.

        • Cabrera R.A.
        • Boyd R.D.
        • Jungst S.B.
        • Wilson E.R.
        • Johnston M.E.
        • Vignes J.L.
        • Odle J.
        Impact of lactation length and piglet weaning weight on long-term growth and viability of progeny.
        J. Anim. Sci. 2010; 88: 2265-2276
        • Garces R.
        • Mancha M.
        One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues.
        Anal. Biochem. 1993; 211: 139-143
        • Zhou Y.
        • Nijland M.
        • Miller M.
        • Ford S.
        • Nathanielsz P.W.
        • Brenna J.T.
        The influence of maternal early to mid-gestation nutrient restriction on long chain polyunsaturated fatty acids in fetal sheep.
        Lipids. 2008; 43: 525-531
        • Brenna J.T.
        • Tyburczy C.
        Identification of FAME double bond location by covalent adduct chemical ionization (CACI) tandem mass spectrometry.
        AOCS Lipid Library. 2010
        • Innis S.M.
        The colostrum-deprived piglet as a model for study of infant lipid nutrition.
        J. Nutr. 1993; 123: 386-390
        • Dobbing J.
        • Sands J.
        Comparative aspects of the brain growth spurt.
        Early Hum. Dev. 1979; 3: 79-83
        • Boland L.M.
        • Drzewiecki M.M.
        Polyunsaturated fatty acid modulation of voltage-gated ion channels.
        Cell Biochem. Biophys. 2008; 52: 59-84
        • Nakamura M.T.
        • Nara T.Y.
        Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases.
        Annu. Rev. Nutr. 2004; 24: 345-376
        • Jump D.B.
        • Botolin D.
        • Wang Y.
        • Xu J.
        • Christian B.
        • Demeure O.
        Fatty acid regulation of hepatic gene transcription.
        J. Nutr. 2005; 135: 2503-2506
        • Igarashi M.
        • Ma K.
        • Chang L.
        • Bell J.M.
        • Rapoport S.I.
        Rat heart cannot synthesize docosahexaenoic acid from circulating alpha-linolenic acid because it lacks elongase-2.
        J. Lipid Res. 2008; 49: 1735-1745
        • Darios F.
        • Ruiperez V.
        • Lopez I.
        • Villanueva J.
        • Gutierrez L.M.
        • Davletov B.
        Alpha-synuclein sequesters arachidonic acid to modulate SNARE-mediated exocytosis.
        EMBO Rep. 2010; 11: 528-533
        • Darios F.
        • Davletov B.
        Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3.
        Nature. 2006; 440: 813-817
        • Connell E.
        • Darios F.
        • Broersen K.
        • Gatsby N.
        • Peak-Chew S.Y.
        • Rickman C.
        • Davletov B.
        Mechanism of arachidonic acid action on syntaxin-Munc18.
        EMBO Rep. 2007; 8: 414-419
        • Odutuga A.A.
        Reversal of brain essential fatty-acid deficiency in the rat by dietary linoleate, linolenate and arachidonate.
        Int. J. Biochem. 1981; 13: 1035-1038
        • Wijendran V.
        • Lawrence P.
        • Diau G.Y.
        • Boehm G.
        • Nathanielsz P.W.
        • Brenna J.T.
        Significant utilization of dietary arachidonic acid is for brain adrenic acid in baboon neonates.
        J. Lipid Res. 2002; 43: 762-767
        • Maekawa M.
        • Takashima N.
        • Matsumata M.
        • Ikegami S.
        • Kontani M.
        • Hara Y.
        • Kawashima H.
        • Owada Y.
        • Kiso Y.
        • et al.
        Arachidonic acid drives postnatal neurogenesis and elicits a beneficial effect on prepulse inhibition, a biological trait of psychiatric illnesses.
        PLoS One. 2009; 4: e5085
        • de la Presa Owens S.
        • Innis S.M.
        Diverse, region-specific effects of addition of arachidonic and docosahexanoic acids to formula with low or adequate linoleic and alpha-linolenic acids on piglet brain monoaminergic neurotransmitters.
        Pediatr. Res. 2000; 48: 125-130
        • Berger A.
        • Crozier G.
        • Bisogno T.
        • Cavaliere P.
        • Innis S.
        • Di Marzo V.
        Anandamide and diet: inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding N-acylethanolamines in piglets.
        Proc. Natl. Acad. Sci. USA. 2001; 98: 6402-6406
        • Salem Jr., N.
        • Wegher B.
        • Mena P.
        • Uauy R.
        Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants.
        Proc. Natl. Acad. Sci. USA. 1996; 93: 49-54
        • Cunnane S.C.
        • Francescutti V.
        • Brenna J.T.
        • Crawford M.A.
        Breast-fed infants achieve a higher rate of brain and whole body docosahexaenoate accumulation than formula-fed infants not consuming dietary docosahexaenoate.
        Lipids. 2000; 35: 105-111
        • Birch E.E.
        • Hoffman D.R.
        • Uauy R.
        • Birch D.G.
        • Prestidge C.
        Visual acuity and the essentiality of docosahexaenoic acid and arachidonic acid in the diet of term infants.
        Pediatr. Res. 1998; 44: 201-209
        • Carlson S.E.
        • Ford A.J.
        • Werkman S.H.
        • Peeples J.M.
        • Koo W.W.
        Visual acuity and fatty acid status of term infants fed human milk and formulas with and without docosahexaenoate and arachidonate from egg yolk lecithin.
        Pediatr. Res. 1996; 39: 882-888
        • Birch E.E.
        • Castaneda Y.S.
        • Wheaton D.H.
        • Birch D.G.
        • Uauy R.D.
        • Hoffman D.R.
        Visual maturation of term infants fed long-chain polyunsaturated fatty acid-supplemented or control formula for 12 mo.
        Am. J. Clin. Nutr. 2005; 81: 871-879
        • Carlson S.E.
        • Werkman S.H.
        • Peeples J.M.
        • Cooke R.J.
        • Tolley E.A.
        Arachidonic acid status correlates with first year growth in preterm infants.
        Proc. Natl. Acad. Sci. USA. 1993; 90: 1073-1077
      2. K.B., Nyuar, Y., Min, K., Ghebremeskel, A.K., Khalil, M.I., Elbashir & M.A., Cawford (2010) Milk of northern Sudanese mothers whose traditional diet is high in carbohydrate contains low docosahexaenoic acid. Acta Paediatr.

        • Whelan J.
        • Surette M.E.
        • Hardardottir I.
        • Lu G.
        • Golemboski K.A.
        • Larsen E.
        • Kinsella J.E.
        Dietary arachidonate enhances tissue arachidonate levels and eicosanoid production in Syrian hamsters.
        J. Nutr. 1993; 123: 2174-2185
        • Sinclair A.J.
        • Johnson L.
        • O'Dea K.
        • Holman R.T.
        Diets rich in lean beef increase arachidonic acid and long-chain omega 3 polyunsaturated fatty acid levels in plasma phospholipids.
        Lipids. 1994; 29: 337-343
        • Sinclair A.J.
        • O'Dea K.
        • Dunstan G.
        • Ireland P.D.
        • Niall M.
        Effects on plasma lipids and fatty acid composition of very low fat diets enriched with fish or kangaroo meat.
        Lipids. 1987; 22: 523-529
        • Mohrhauer H.
        • Holman R.T.
        Alteration of the fatty acid composition of brain lipids by varying levels of dietary essential fatty acids.
        J. Neurochem. 1963; 10: 523-530
        • Su H.M.
        • Keswick L.A.
        • Brenna J.T.
        Increasing dietary linoleic acid in young rats increases and then decreases docosahexaenoic acid in retina but not in brain.
        Lipids. 1996; 31: 1289-1298
        • Diau G.Y.
        • Hsieh A.T.
        • Sarkadi-Nagy E.A.
        • Wijendran V.
        • Nathanielsz P.W.
        • Brenna J.T.
        The influence of long chain polyunsaturate supplementation on docosahexaenoic acid and arachidonic acid in baboon neonate central nervous system.
        BMC Med. 2005; 3: 11
        • FAO/WHO
        Interim Summary of conClusions and Dietary Recommendations on Total Fat and Fatty Acids.
        WHO HQ, Geneva2010 (November 10–14, 2008)
        • van Goor S.A.
        • Dijck-Brouwer D.A.
        • Doornbos B.
        • Erwich J.J.
        • Schaafsma A.
        • Muskiet F.A.
        • Hadders-Algra M.
        Supplementation of DHA but not DHA with arachidonic acid during pregnancy and lactation influences general movement quality in 12-week-old term infants.
        Br. J. Nutr. 2010; 103: 235-242
        • van Goor S.A.
        • Dijck-Brouwer D.A.
        • Hadders-Algra M.
        • Doornbos B.
        • Erwich J.J.
        • Schaafsma A.
        • Muskiet F.A.
        Human milk arachidonic acid and docosahexaenoic acid contents increase following supplementation during pregnancy and lactation.
        Prostaglandins Leukot. Essent. Fatty Acids. 2009; 80: 65-69
        • van Goor S.A.
        • Schaafsma A.
        • Erwich J.J.
        • Dijck-Brouwer D.A.
        • Muskiet F.A.
        Mildly abnormal general movement quality in infants is associated with higher Mead acid and lower arachidonic acid and shows a U-shaped relation with the DHA/AA ratio.
        Prostaglandins Leukot. Essent. Fatty Acids. 2009; 82: 15-20
        • Galli C.
        • White Jr., H.B.
        • Paoletti R.
        Lipid alterations and their reversion in the central nervous system of growing rats deficient in essential fatty acids.
        Lipids. 1971; 6: 378-387
        • Farquharson J.
        • Cockburn F.
        • Patrick W.A.
        • Jamieson E.C.
        • Logan R.W.
        Infant cerebral cortex phospholipid fatty-acid composition and diet.
        Lancet. 1992; 340: 810-813
        • Greiner R.S.
        • Catalan J.N.
        • Moriguchi T.
        • Salem Jr., N.
        Docosapentaenoic acid does not completely replace DHA in n−3 FA-deficient rats during early development.
        Lipids. 2003; 38: 431-435
        • Brand A.
        • Crawford M.A.
        • Yavin E.
        Retailoring docosahexaenoic acid-containing phospholipid species during impaired neurogenesis following omega-3 alpha-linolenic acid deprivation.
        J. Neurochem. 2010; 114: 1393-1404
        • Diau G.Y.
        • Loew E.R.
        • Wijendran V.
        • Sarkadi-Nagy E.
        • Nathanielsz P.W.
        • Brenna J.T.
        Docosahexaenoic and arachidonic acid influence on preterm baboon retinal composition and function.
        Invest. Ophthalmol. Vis. Sci. 2003; 44: 4559-4566
        • Lim S.Y.
        • Hoshiba J.
        • Moriguchi T.
        • Salem Jr., N.
        n−3 Fatty acid deficiency induced by a modified artificial rearing method leads to poorer performance in spatial learning tasks.
        Pediatr. Res. 2005; 58: 741-748
        • Champoux M.
        • Hibbeln J.R.
        • Shannon C.
        • Majchrzak S.
        • Suomi S.J.
        • Salem Jr., N.
        • Higley J.D.
        Fatty acid formula supplementation and neuromotor development in rhesus monkey neonates.
        Pediatr. Res. 2002; 51: 273-281