Advertisement

A quantum theory for the irreplaceable role of docosahexaenoic acid in neural cell signalling throughout evolution

Published:December 03, 2012DOI:https://doi.org/10.1016/j.plefa.2012.08.005

      Abstract

      Six hundred million years ago, the fossil record displays the sudden appearance of intracellular detail and the 32 phyla. The “Cambrian Explosion” marks the onset of dominant aerobic life. Fossil intracellular structures are so similar to extant organisms that they were likely made with similar membrane lipids and proteins, which together provided for organisation and specialisation. While amino acids could be synthesised over 4 billion years ago, only oxidative metabolism allows for the synthesis of highly unsaturated fatty acids, thus producing novel lipid molecular species for specialised cell membranes.
      Docosahexaenoic acid (DHA) provided the core for the development of the photoreceptor, and conversion of photons into electricity stimulated the evolution of the nervous system and brain. Since then, DHA has been conserved as the principle acyl component of photoreceptor synaptic and neuronal signalling membranes in the cephalopods, fish, amphibian, reptiles, birds, mammals and humans. This extreme conservation in electrical signalling membranes despite great genomic change suggests it was DHA dictating to DNA rather than the generally accepted other way around.
      We offer a theoretical explanation based on the quantum mechanical properties of DHA for such extreme conservation. The unique molecular structure of DHA allows for quantum transfer and communication of π-electrons, which explains the precise depolarisation of retinal membranes and the cohesive, organised neural signalling which characterises higher intelligence.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dumas F.
        • Lebrun M.C.
        • Tocanne J.F.
        Is the protein/lipid hydrophobic matching principle relevant to membrane organization and functions?.
        FEBS Lett. 1999; 458: 271-277
        • Sperotto M.M.
        • Mouritsen O.G.
        Lipid enrichment and selectivity of integral membrane proteins in two-component lipid bilayers.
        Eur. Biophys. J. 1993; 22: 323-328
        • Song C.
        • Holmsen H.
        • Nerdal W.
        Existence of lipid microdomains in bilayer of dipalmitoyl phosphatidylcholine (DPPC) and 1-stearoyl-2-docosahexenoyl phosphatidylserine (SDPS) and their perturbation by chlorpromazine: a 13C and 31P solid-state NMR study.
        Biophys. Chem. 2006; 120: 178-187
        • Sprecher H.
        Metabolism of highly unsaturated n-3 and n-6 fatty acids.
        Biochim. Biophys. Acta. 2000; 1486: 219-231
      1. A.J. Sinclair, Long-Chain Polyunsaturated FA in the Mammalian Brain, in: Proceedings of the Nutrition Society, 1975, 34, pp. 287–291.

        • Brenna J.T.
        • Salem Jr, N.
        • Sinclair A.J.
        • Cunnane S.C.
        Alpha-linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans.
        Prostaglandins Leukot. Essent. Fatty Acids. 2009; 80 (International Society for the Study of Fatty Acids and Lipids (ISSFAL)): 85-91
        • Crawford M.A.
        • Bloom M.
        • Broadhurst C.L.
        • Schmidt W.F.
        • Cunnane S.C.
        • Galli C.
        • Ghebremeskel K.
        • Linseisen F.
        • Lloyd-Smith J.
        • Parkington J.
        Evidence for the unique function of DHA during the evolution of the modern hominid brain.
        Lipids. 2009; 34: S39-S47
        • Leigh Broadhurst C.
        • Wang Y.
        • Crawford M.A.
        • Cunnane S.C.
        • Parkington J.E.
        • Schmidt W.F.
        Brain-specific lipids from marine, lacustrine, or terrestrial food resources: potential impact on early African Homo sapiens.
        Comp. Biochem. Physiol. Part B. 2002; 131: 653-673
        • Chawla A.
        • Repa J.J.
        • Evans R.M.
        • Mangelsdorf D.J.
        Nuclear receptors and lipid physiology: opening the X-files.
        Science. 2001; 294: 1866-1870
        • Kitajka K.
        • Sinclair A.J.
        • Weisinger R.S.
        • Weisinger H.S.
        • Mathai M.
        • Jayasooriya A.P.
        • Halver J.E.
        • Puskas L.G.
        Effects of dietary omega-3 polyunsaturated fatty acids on brain gene expression.
        Proc. Natl. Acad. Sci. USA. 2004; 101: 10931-10936
        • Hardy A.
        Was man more aquatic in the past?.
        New Sci. 1960; 7: 642-645
        • Morgan E.
        The Aquatic Ape Hypothesis.
        Souvenir Press, London1997
        • Suzuki H.
        • Manabe S.
        • Wada O.
        • Crawford M.A.
        Rapid incorporation of docosahexaenoic acid from dietary sources into brain microsomal, synaptosomal and mitochondrial membranes in adult mice.
        Int. J. Vitam. Res. 1997; 67: 272-278
        • Crawford M.A.
        • Sinclair A.J.
        Nutritional influences in the evolution of the mammalian brain.
        in: Elliot K. Knight J. Lipids, Malnutrition and the Developing Brain. Elsevier, Amsterdam1972: 267-292 (A Ciba Foundation Symposium)
        • Marean C.W.
        Pinnacle pint cave 13B (Western Cape Province, South Africa in context: the cape floral kingdom, shellfish and modern human origins.
        J. Hum. Evol. 2010; : 425-443
        • Darwin C.
        On the Origin of Species by Means of Natural or The Preservation of Favoured Races in the Struggle for Life.
        6th ed. John Murray, London1872
        • Weismann A.
        All sufficiency of Natural Selection.
        Contemp. Rev. 1893; 64: 309-338
        • Marsh D.
        Darwin's passionate environmentalism or the dangerous fallacy of the ‘All-sufficiency of natural selection’.
        Nutr. Health. 2012; 21: 76-90
      2. M. Bloom, F. Linseisen, J. Lloyd-Smith, M.A. Crawford, Insights from NMR on the Functional Role of Polyunsaturated Lipids in the Brain. In: Magnetic Resonance and Brain Function—Approaches from Physics, Proceedings of the 1998 Enrico Fermi International School of Physics, Enrico Fermi Lecture, Course #139, Varenna, Italy, 1999, pp. 1–27, Editor B. Maraviglia.

        • Gawrisch K.
        • Eldho N.V.
        • Holte L.L.
        The structure of DHA in phospholipid membranes.
        Lipids. 2003; 38: 445-452
        • Steele R.H.
        • Szent-Gyorgyi A.
        On excitation of biological substances.
        Proc. Natl. Acad. Sci. 1957; 43 (Biochemistry): 478-491
        • Avery J.
        • Bay Z.
        • Szent-Gyorgi A.
        On energy transfer in biological systems.
        Proc. Natl. Acad. Sci. 1961; 47 (Biochemistry): 1742-1744
      3. D. Bendall, Interprotein Electron Transfer, in: D.S. Bendall, (Ed.), Protein Electron Transfer, Bios Scientific Publishers, Oxford, UK, 1996, pp. 43–68

        • Hopfield J.J.
        Electron transfer between biological molecules by thermally activated tunneling.
        Proc. Natl. Acad. Sci. USA. 1974; 71: 3640-3644
        • Hackermüller L.
        • Uttenthaler S.
        • Hornberger K.
        • Reiger E.
        • Brezger B.
        • Zeilinger A.
        • Arndt M.
        • Wave M.
        Nature of biomolecules and fluorofullerenes.
        Phys. Rev. Lett. 2003; 91: 090408
        • Hameroff S.
        • Penrose R.
        Quantum computation in brain microtubules the Penrose-Hameroff Orch OR model of consciousness.
        Philos. Trans. R. Soc. London A. 1998; 356: 1869-1896
        • Hameroff S.
        The conscious pilot-dendritic synchrony moves through the brain to mediate consciousness.
        J. Biol. Phys. 2010; 36: 71-93
      4. M.A. Crawford, C.L..Broadhurst, C. Galli, K. Ghebremeskel, H. Holmsen, L.F. Saugstad, W.F. Schmidt, A.J. Sinclair, S.C. Cunnane, The Role of Docosahexaenioc and Arachidonic Acids as Determinants of Evolution and Hominid Brain Development, Fisheries for Global Welfare and Environment, 5th World Fisheries Congress, 2003, pp. 57–76.

        • Jin Y.
        • Honig T.
        • Ron I.
        • Friedman N.
        • Sheves M.
        • Cahen D.
        Bacteriorhodopsin (bR) as an electronic conduction medium: current transport through bR-containing monolayers.
        Chem. Soc. Rev. 2008; 37: 2422-2432
        • Casanova D.
        • Head-Gordon M.
        Restricted active space spin-flip configuration interaction approach: theory, implementation and examples.
        Phys. Chem. Chem. Phys. 2009; 11: 9779-9790
        • Stuchebrukhov A.
        A long_distance electron tunneling in proteins: a new challenge for time resolved spectroscopy.
        Laser Phys. 2010; 1 (ISSN 1054_660X): 125-138
      5. M.E, Burns, T.D. Lamb, Visual Transduction by Rod and Cone Photoreceptors, in: L. Chalupa, J. Werner, (Ed.), The Visual Neurosciences, MIT Press, 2003, pp. 215–233

        • Neuringer M.
        • Connor W.E.
        • Van Petten C.
        • Barstad L.
        Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys.
        J. Clin. Invest. 1984; 73: 272-276
        • Birch E.E.
        • Carlson S.E.
        • Hoffman D.R.
        • Fitzgerald-Gustafson K.M.
        • Fu V.L.
        • Drover J.R.
        • Castañeda Y.S.
        • Minns L.
        • Wheaton D.K.
        • Mundy D.
        • Marunycz J.
        • Diersen-Schade D.A.
        The DIAMOND (DHA Intake and Measurement of Neural Development) study: a double-masked, randomized controlled clinical trial of the maturation of infant visual acuity as a function of the dietary level of docosahexaenoic acid.
        Am. J. Clin. Nutr. 2010; 91: 848-859
        • Razavy M.
        Quantum Theory of Tunneling.
        World Scientific Publishing Co Pte Ltd., Singapore2002 (July)
      6. G. Klimeck, M. McLennan, M. Lundstrom, G. Adams, NanoHUB.org—Online Simulation and More Materials for Semiconductors and Nanoelectronics in Education and Research, in: Proceedings of the 8th IEEE Conference on Nanotechnology, Nano, 2008, pp. 401–404.

        • Angeli C.
        On the nature of the ππ* ionic excited states: the V state of ethene as a prototype.
        J. Comput. Chem. 2009; 30: 1319-1333
        • Kundu T.
        • Pradhan B.
        • Singh B.P.
        Origin of methyl torsional potential barrier—an overview.
        Proc. Indian Acad. Sci. (Chem. Sci.). 2002; 114: 623-638
        • Allen A.E.
        • Cameron M.A.
        • Brown T.M.
        • Vugler A.A.
        • Lucas R.J.
        Visual responses in mice lacking critical components of all known retinal phototransduction cascades.
        PLoS One. 2010; 5: e15063
        • Overhauser W.
        • Albert W.
        Polarization of nuclei in metals.
        Phys. Rev. 1953; 92: 411-415
        • Anet F.A.L.
        • Bourn A.J.R.
        Nuclear magnetic resonance spectral assignments from nuclear overhauser effects.
        J. Am. Chem. Soc. 1965; 87: 5250-5251

      Linked Article