Review| Volume 89, ISSUE 1, P1-8, July 2013

Download started.


Bioavailability of long-chain omega-3 fatty acids


      Supplements have reached a prominent role in improving the supply of long-chain omega-3 fatty acids, such as Eicosapentaenoic acid (EPA 20:5n−3) and Docosahexaenoic acid (DHA 22:6n−3). Similar to other nutrients, the availability of omega-3 fatty acids is highly variable and determined by numerous factors. However, the question of omega-3 fatty acids bioavailability has long been disregarded, which may have contributed to the neutral or negative results concerning their effects in several studies. This review provides an overview of the influence of chemical binding form (free fatty acids bound in ethylesters, triacylglycerides or phospholipids), matrix effects (capsule ingestion with concomitant intake of food, fat content in food) or galenic form (i.e. microencapsulation, emulsification) on the bioavailability of omega-3 fatty acids. There is a need to systematically investigate the bioavailability of omega-3 fatty acids formulations, which might be a key to designing more effective studies in the future.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Schuchardt JP
        • Hahn A
        Bioverfügbarkeit langkettiger Omega-3-Fettsäuren.
        in: von Schacky C. Omega-3-Fettsäuren und kardiovaskuläre Erkrankungen. Uni-Med, Bremen2012: 68-80
        • Burdge G.C.
        • Jones A.E.
        • Wootton S.A.
        Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men.
        Br. J. Nutr. 2002; 88: 355-363
        • Burdge G.C.
        • Wootton S.A.
        Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women.
        Br. J. Nutr. 2002; 88: 411-420
        • Burdge G.C.
        • Calder P.C.
        Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults.
        Reprod. Nutr. Dev. 2005; 45: 581-597
        • Pawlosky R.J.
        • Hibbeln J.R.
        • Novotny J.A.
        • Salem N.
        Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans.
        J. Lipid Res. 2001; 42: 1257-1265
        • Plourde M.
        • Cunnane S.C.
        Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as supplements.
        Appl. Physiol. Nutr. Metab. 2007; 32: 619-634
        • Dyerberg J.
        • Madsen P.
        • Møller J.M.
        • Aardestrup I.
        • Schmidt E.B.
        Bioavailability of marine n−3 fatty acid formulations.
        Prostaglandins Leukot. Essent. Fatty Acids. 2010; 83: 137-141
        • Tso P.
        • Hayashi H.
        The physiology and regulation of the intestinal absorption and transport of omega-3 and omega-6 fatty acids.
        Adv. Prostaglandin Thromboxane Leukot. Res. 1989; 19: 623-626
        • Borgström B.
        Fat digestion and absorption.
        Biomembranes. 1974; 4: 555-620
        • Stahl A.
        • Gimeno R.E.
        • Tartaglia L.A.
        • Lodish H.F.
        Fatty acid transport proteins: a current view of a growing family.
        Trends Endocrinol. Metabol. 2001; 12: 266-273
        • Stahl A.
        • Hirsch D.J.
        • Gimeno R.E.
        • Punreddy S.
        • Ge P.
        • Watson N.
        • Patel S.
        • Kotler M.
        • Raimondi A.
        • Tartaglia L.A.
        • Lodish H.F.
        Identification of the major intestinal fatty acid transport protein.
        Mol. Cell. 1999; 4: 299-308
        • Katan M.B.
        • Deslypere J.P.
        • van Birgelen A.P.
        • Penders M.
        • Zegwaard M.
        Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study.
        J. Lipid Res. 1997; 38: 2012-2022
        • Cao J.
        • Schwichtenberg K.A.
        • Hanson N.Q.
        • Tsai M.Y.
        Incorporation and clearance of omega-3 fatty acids in erythrocyte membranes and plasma phospholipids.
        Clin. Chem. 2006; 52: 2265-2272
        • Fekete K.
        • Marosvölgyi T.
        • Jakobik V.
        • Decsi T.
        Methods of assessment of n−3 long-chain polyunsaturated fatty acid status in humans: a systematic review.
        Am. J. Clin. Nutr. 2009; 89: 2070S-2084S
        • Harris W.S.
        • von Schacky C.
        The Omega-3 Index: a new risk factor for death from coronary heart disease?.
        Prev. Med. 2004; 39: 212-220
        • Metcalf R.G.
        • James M.J.
        • Gibson R.A.
        • Edwards J.R.
        • Stubberfield J.
        • Stuklis R.
        • Roberts-Thomson K.
        • Young G.D.
        • Cleland L.G.
        Effects of fish-oil supplementation on myocardial fatty acids in humans.
        Am. J. Clin. Nutr. 2007; 85: 1222-1228
        • Harris W.S.
        • Sands S.A.
        • Windsor S.L.
        • Ali H.A.
        • Stevens T.L.
        • Magalski A.
        • Porter C.B.
        • Borkon A.M.
        Omega-3 fatty acids in cardiac biopsies from heart transplantation patients: correlation with erythrocytes and response to supplementation.
        Circulation. 2004; 110: 1645-1649
        • Tu W.C.
        • Mühlhäusler B.S.
        • Yelland L.N.
        • Gibson R.A.
        Correlations between blood and tissue omega-3 LCPUFA status following dietary ALA intervention in rats.
        Prostaglandins Leukot. Essent. Fatty Acids. 2013; 88: 53-60
        • Harris W.S.
        • Thomas R.M.
        Biological variability of blood omega-3 biomarkers.
        Clin. Biochem. 2010; 43: 338-340
        • Köhler A.
        • Bittner D.
        • Löw A.
        • von Schacky C.
        Effects of a convenience drink fortified with n−3 fatty acids on the n−3 index.
        Br. J. Nutr. 2010; 104: 729-736
        • Vandal M.
        • Freemantle E.
        • Tremblay-Mercier J.
        • Plourde M.
        • Fortier M.
        • Bruneau J.
        • Gagnon J.
        • Bégin M.
        • Cunnane S.C.
        Plasma omega-3 fatty acid response to a fish oil supplement in the healthy elderly.
        Lipids. 2008; 43: 1085-1089
        • Schneider I.
        • Schuchardt JP
        • Meyer H.
        • Hahn A.
        Effect of gastric acid resistant coating of fish oil capsules on intestinal uptake of eicosapentaenoic acid and docosahexaenoic acid.
        J. Funct. Foods. 2011; 3: 129-133
        • Hodge J.
        • Sanders K.
        • Sinclair A.J.
        Differential utilization of eicosapentaenoic acid and docosahexaenoic acid in human plasma.
        Lipids. 1993; 28: 525-531
        • el Boustani S.
        • Colette C.
        • Monnier L.
        • Descomps B.
        • de Crastes Paulet A.
        • Mendy F.
        Enteral absorption in man of eicosapentaenoic acid in different chemical forms.
        Lipids. 1987; 22: 711-714
        • Lawson L.D.
        • Hughes B.G.
        Human absorption of fish oil fatty acids as triacylglycerols, free acids, or ethyl esters.
        Biochem. Biophys. Res. Commun. 1988; 152: 328-335
        • Beckermann B.
        • Beneke M.
        • Seitz I.
        Vergleich der Bioverfügbarkeit von Eicosapentaensäure und Docosahexaensäure aus Triglyceriden, freien Fettsäuren und Ethylestern bei Probanden.
        Arzneimittelforschung. 1990; 40: 700-704
        • Kling D.F.
        • Johnson J.
        • Rooney M.
        • Davidson M.
        Omega-3 free fatty acids demonstrate more than 4-fold greater bioavailability for EPA and DHA compared with omega-3-acid ethyl esters in conjunction with a low-fat diet: the ECLIPSE study.
        J. Clin. Lipidol. 2011; 5: 231
        • Davidson M.H.
        • Johnson J.
        • Rooney M.W.
        • Kyle M.L.
        • Kling D.F.
        A novel omega-3 free fatty acid formulation has dramatically improved bioavailability during a low-fat diet compared with omega-3-acid ethyl esters: the ECLIPSE (Epanova(®) compared to Lovaza(®) in a pharmacokinetic single-dose evaluation) study.
        J. Clin. Lipidol. 2012; 6: 573-584
        • Hansen J.B.
        • Olsen J.O.
        • Wilsgård L.
        • Lyngmo V.
        • Svensson B.
        Comparative effects of prolonged intake of highly purified fish oils as ethyl ester or triglyceride on lipids, haemostasis and platelet function in normolipaemic men.
        Eur. J. Clin. Nutr. 1993; 47: 497-507
        • Neubronner J.
        • Schuchardt J.P.
        • Kressel G.
        • Merkel M.
        • von Schacky C.
        • Hahn A.
        Enhanced increase of omega-3 index in response to long-term n−3 fatty acid supplementation from triacylglycerides versus ethyl esters.
        Eur. J. Clin. Nutr. 2011; 65: 247-254
        • Reis G.J.
        • Silverman D.I.
        • Boucher T.M.
        • Sipperly M.E.
        • Horowitz G.L.
        • Sacks F.M.
        • Pasternak R.C.
        Effects of two types of fish oil supplements on serum lipids and plasma phospholipid fatty acids in coronary artery disease.
        Am. J. Cardiol. 1990; 66: 1171-1175
        • Yang L.Y.
        • Kuksis A.
        • Myher J.J.
        Lipolysis of menhaden oil triacylglycerols and the corresponding fatty acid alkyl esters by pancreatic lipase in vitro: a reexamination.
        J. Lipid Res. 1990; 31: 137-147
        • Yang L.Y.
        • Kuksis A.
        • Myher J.J.
        Intestinal absorption of menhaden and rapeseed oils and their fatty acid methyl and ethyl esters in the rat.
        Biochem. Cell Biol. 1990; 68: 480-491
        • Visioli F.
        • Risé P.
        • Barassi M.C.
        • Marangoni F.
        • Galli C.
        Dietary intake of fish vs. formulations leads to higher plasma concentrations of n−3 fatty acids.
        Lipids. 2003; 38: 415-418
        • Maki K.C.
        • Reeves M.S.
        • Farmer M.
        • Griinari M.
        • Berge K.
        • Vik H.
        • Hubacher R.
        • Rains T.M.
        Krill oil supplementation increases plasma concentrations of eicosapentaenoic and docosahexaenoic acids in overweight and obese men and women.
        Nutr. Res. 2009; 29: 609-615
        • Schuchardt J.P.
        • Schneider I.
        • Meyer H.
        • Neubronner J.
        • von Schacky C.
        • Hahn A.
        Incorporation of EPA and DHA into plasma phospholipids in response to different omega-3 fatty acid formulations—a comparative bioavailability study of fish oil vs. krill oil.
        Lipids Health Dis. 2011; 10: 145
        • Ulven S.M.
        • Kirkhus B.
        • Lamglait A.
        • Basu S.
        • Elind E.
        • Haider T.
        • Berge K.
        • Vik H.
        • Pedersen J.I.
        Metabolic effects of krill oil are essentially similar to those of fish oil but at lower dose of EPA and DHA, in healthy volunteers.
        Lipids. 2011; 46: 37-46
        • Mun S.
        • Decker E.A.
        • McClements D.J.
        Influence of emulsifier type on in vitro digestibility of lipid droplets by pancreatic lipase.
        Food Res. Int. 2007; 40: 770-781
        • Lawson L.D.
        • Hughes B.G.
        Absorption of eicosapentaenoic acid and docosahexaenoic acid from fish oil triacylglycerols or fish oil ethyl esters co-ingested with a high-fat meal.
        Biochem. Biophys. Res. Commun. 1988; 156: 960-963
        • Nordøy A.
        • Barstad L.
        • Connor W.E.
        • Hatcher L.
        Absorption of the n−3 eicosapentaenoic and docosahexaenoic acids as ethyl esters and triglycerides by humans.
        Am. J. Clin. Nutr. 1991; 53: 1185-1190
        • Harris W.S.
        • Pottala J.V.
        • Sands S.A.
        • Jones P.G.
        Comparison of the effects of fish and fish-oil capsules on the n 3 fatty acid content of blood cells and plasma phospholipids.
        Am. J. Clin. Nutr. 2007; 86: 1621-1625
        • Raatz S.K.
        • Redmon J.B.
        • Wimmergren N.
        • Donadio J.V.
        • Bibus D.M.
        Enhanced absorption of n−3 fatty acids from emulsified compared with encapsulated fish oil.
        J. Am. Diet. Assoc. 2009; 109: 1076-1081
        • Garaiova I.
        • Guschina I.A.
        • Plummer S.F.
        • Tang J.
        • Wang D.
        • Plummer N.T.
        A randomised cross-over trial in healthy adults indicating improved absorption of omega-3 fatty acids by pre-emulsification.
        Nutr. J. 2007; 6: 4
        • Ikeda I.
        Digestion and absorption of structured lipids.
        in: Chrisyophe A.G. DeVriese S. Fat Digestion and Absorption. AOCS Press, Champaign, IL2000: 235-243
        • Wakil A.
        • Mackenzie G.
        • Diego-Taboada A.
        • Bell J.G.
        • Atkin S.L.
        Enhanced bioavailability of eicosapentaenoic acid from fish oil after encapsulation within plant spore exines as microcapsules.
        Lipids. 2010; 45: 645-649
        • Sanguansri L.
        • Shen Z.
        • Weerakkody R.
        • Barnes M.
        • Lockett T.
        • Augustin M.A.
        Omega-3 fatty acids in ileal effluent after consuming different foods containing microencapsulated fish oil powder—an ileostomy study.
        Food Funct. 2013; 4: 74-82
        • Kurowska E.M.
        • Dresser G.K.
        • Deutsch L.
        • Vachon D.
        • Khalil W.
        Bioavailability of omega-3 essential fatty acids from perilla seed oil.
        Prostaglandins Leukot. Essent. Fatty Acids. 2003; 68: 207-212
        • Iqbal J.
        • Hussain M.M.
        Intestinal lipid absorption.
        Am. J. Physiol. Endocrinol. Metab. 2009; 296: E1183-94
        • Schuchardt J.P.
        • Neubronner J.
        • Kressel G.
        • Merkel M.
        • von Schacky C.
        • Hahn A.
        Moderate doses of EPA and DHA from re-esterified triacylglycerols but not from ethyl-esters lower fasting serum triacylglycerols in statin-treated dyslipidemic subjects: results from a six month randomized controlled trial.
        Prostaglandins Leukot. Essent. Fatty Acids. 2011; 85: 381-386
        • Rauch B.
        • Schiele R.
        • Schneider S.
        • Diller F.
        • Victor N.
        • Gohlke H.
        • Gottwik M.
        • Steinbeck G.
        • Del Castillo U.
        • Sack R.
        • Worth H.
        • Katus H.
        • Spitzer W.
        • Sabin G.
        • Senges J.
        OMEGA, a randomized, placebo-controlled trial to test the effect of highly purified omega-3 fatty acids on top of modern guideline-adjusted therapy after myocardial infarction.
        Circulation. 2010; 122: 2152-2159
        • Krokan H.E.
        • Bjerve K.S.
        • Mørk E.
        The enteral bioavailability of eicosapentaenoic acid and docosahexaenoic acid is as good from ethyl esters as from glyceryl esters in spite of lower hydrolytic rates by pancreatic lipase in vitro.
        Biochim. Biophys. Acta. 1993; 1168: 59-67
        • Wakil A.
        • Mir M.
        • Mellor D.D.
        • Mellor S.F.
        • Atkin S.L.
        The bioavailability of eicosapentaenoic acid from reconstituted triglyceride fish oil is higher than that obtained from the triglyceride and monoglyceride forms.
        Asia Pac. J. Clin. Nutr. 2010; 19: 499-505
        • Harris W.S.
        • Windsor S.L.
        N−3 fatty acid supplements reduce chylomicron levels in healthy volunteers.
        J. Appl. Nutr. 1991; 43: 5-15
        • Wallace J.M.
        • McCabe A.J.
        • Robson P.J.
        • Keogh M.K.
        • Murray C.A.
        • Kelly P.M.
        • Márquez-Ruiz G.
        • McGlynn H.
        • Gilmore W.S.
        • Strain J.J.
        Bioavailability of n−3 polyunsaturated fatty acids (PUFA) in foods enriched with microencapsulated fish oil.
        Ann. Nutr. Metab. 2000; 44: 157-162
      1. European Pharmacopoeia 7.5, Monograph 1352, Omega-3 Acid Triglycerides (2012) 4677–4678.