Research Article| Volume 99, P7-17, August 2015

Download started.


Vitamin B12 and omega-3 fatty acids together regulate lipid metabolism in Wistar rats

  • Amrita Khaire
    Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
    Search for articles by this author
  • Richa Rathod
    Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
    Search for articles by this author
  • Anvita Kale
    Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
    Search for articles by this author
  • Sadhana Joshi
    Corresponding author at: Department of Nutritional Medicine, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India. Tel.:+20 24366929/+20 24366931; fax: +20 24366929.
    Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
    Search for articles by this author


      Our recent study indicates that maternal vitamin B12 and omega-3 fatty acid status influence plasma and erythrocyte fatty acid profile in dams. The present study examines the effects of prenatal and postnatal vitamin B12 and omega-3 fatty acid status on lipid metabolism in the offspring. Pregnant dams were divided into five groups: Control; Vitamin B12 deficient (BD); Vitamin B12 supplemented (BS); Vitamin B12 deficient group supplemented with omega-3 fatty acids (BDO); Vitamin B12 supplemented group with omega-3 fatty acids (BSO). The offspring were continued on the same diets till 3 month of age. Vitamin B12 deficiency increased cholesterol levels (p<0.01) but reduced docosahexaenoic acid (DHA) (p<0.05), liver mRNA levels of acetyl CoA carboxylase-1 (ACC-1) (p<0.05) and carnitine palmitoyltransferase-1 (CPT-1) (p<0.01) in the offspring. Omega-3 fatty acid supplementation to this group normalized cholesterol but not mRNA levels of ACC-1 and CPT-1. Vitamin B12 supplementation normalized the levels cholesterol to that of control but increased plasma triglyceride (p<0.01) and reduced liver mRNA levels of adiponectin, ACC-1, and CPT-1 (p<0.01 for all). Supplementation of both vitamin B12 and omega-3 fatty acid normalized triglyceride and mRNA levels of all the above genes. Prenatal and postnatal vitamin B12 and omega-3 fatty acids together play a crucial role in regulating the genes involved in lipid metabolism in adult offspring.


      ADP (adiponectin), ACC (acetyl CoAcarboxylase), CPT (carnitine palmitoyltransferase), DHA (docosahexanoic acid), EPA (eicosapentaenoic acid)


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Kasbi-Chadli F.
        • Boquien C.Y.
        • Simard G.
        • Ulmann L.
        • Mimouni V.
        • Leray V.
        • Meynier A.
        • Ferchaud-Roucher V.
        • Champ M.
        • Nguyen P.
        • Ouguerram K.
        Maternal supplementation with n-3 long chain polyunsaturated fatty acids during perinatal period alleviates the metabolic syndrome disturbances in adult hamster pups fed a high-fat diet after weaning.
        J. Nutr. Biochem. 2014; 25: 726-733
        • Christian P.
        • Stewart C.P.
        Maternal micronutrient deficiency, fetal development, and the risk of chronic disease.
        J. Nutr. 2010; 140: 437-445
        • Rush E.C.
        • Katre P.
        • Yajnik C.S.
        Vitamin B12: one carbon metabolism, fetal growth and programming for chronic disease.
        Eur. J. Clin. Nutr. 2014; 68: 2-7
        • Dror D.K.
        • Allen L.H.
        Interventions with vitamins B6, B12 and C in pregnancy.
        Paediatr. Perinat. Epidemiol. 2012; 26: 55-74
        • Thompson M.D.
        • Cole D.E.
        • Ray J.G.
        Vitamin B-12 and neural tube defects: the Canadian experience.
        Am. J. Clin. Nutr. 2009; 89: 697S-701S
        • Finer S.
        • Saravanan P.
        • Hitman G.
        • Yajnik C.
        The role of the one-carbon cycle in the developmental origins of Type 2 diabetes and obesity.
        Diabet. Med. 2014; 31 (A Journal of the British Diabetic Association): 263-272
        • Innis S.M.
        Metabolic programming of long-term outcomes due to fatty acid nutrition in early life.
        Matern. Child Nutr. 2011; 7: 112-123
        • Houde A.A.
        • Hivert M.F.
        • Bouchard L.
        Fetal epigenetic programming of adipokines.
        Adipocyte. 2013; 2: 41-46
        • Fu Y.
        Adiponectin signaling and metabolic syndrome.
        Prog. Mol. Biol. Transl. Sci. 2014; 121: 293-319
        • Chen H.
        • Zhang L.
        • Li X.
        • Li X.
        • Sun G.
        • Yuan X.
        • Lei L.
        • Liu J.
        • Yin L.
        • Deng Q.
        • Wang J.
        • Liu Z.
        • Yang W.
        • Wang Z.
        • Zhang H.
        • Liu G.
        Adiponectin activates the AMPK signaling pathway to regulate lipid metabolism in bovine hepatocytes.
        J. Steroid Biochem. Mol. Biol. 2013; 138: 445-454
        • Wakil S.J.
        • Abu-Elheiga L.A.
        Fatty acid metabolism: target for metabolic syndrome.
        J. Lipid Res. 2009; 50 (Suppl.): S138-S143
        • Harwood Jr., H.J.
        Treating the metabolic syndrome: acetyl-CoA carboxylase inhibition.
        Expert Opin. Ther. Targets. 2005; 9: 267-281
        • Gray B.
        • Steyn F.
        • Davies P.S.
        • Vitetta L.
        Omega-3 fatty acids: a review of the effects on adiponectin and leptin and potential implications for obesity management.
        Eur. J. Clin. Nutr. 2013; 67: 1234-1242
        • Ahmed A.A.
        • Balogun K.A.
        • Bykova N.V.
        • Cheema S.K.
        Novel regulatory roles of omega-3 fatty acids in metabolic pathways: a proteomics approach.
        Nutr. Metab. 2014; 11: 6
        • Carpentier Y.A.
        • Portois L.
        • Malaisse W.J.
        n-3 fatty acids and the metabolic syndrome.
        Am. J. Clin. Nutr. 2006; 83: 1499s-1504s
        • Mostowik M.
        • Gajos G.
        • Zalewski J.
        • Nessler J.
        • Undas A.
        Omega-3 polyunsaturated fatty acids increase plasma adiponectin to leptin ratio in stable coronary artery disease.
        Cardiovasc. Drugs Ther. 2013; 27 (/Sponsored by the International Society of Cardiovascular Pharmacotherapy): 289-295
        • De Giuseppe R.
        • Roggi C.
        • Cena H.
        n-3 LC-PUFA supplementation: effects on infant and maternal outcomes.
        Eur. J. Nutr. 2014; 53: 1147-1154
        • Meher A.P.
        • Joshi A.A.
        • Joshi S.R.
        Preconceptional omega-3 fatty acid supplementation on a micronutrient-deficient diet improves the reproductive cycle in Wistar rats.
        Reprod. Fertil. Dev. 2013; 25: 1085-1094
        • Sable P.S.
        • Dangat K.D.
        • Joshi A.A.
        • Joshi S.R.
        Maternal omega 3 fatty acid supplementation during pregnancy to a micronutrient-imbalanced diet protects postnatal reduction of brain neurotrophins in the rat offspring.
        Neuroscience. 2012; 217: 46-55
        • Roy S.
        • Kale A.
        • Dangat K.
        • Sable P.
        • Kulkarni A.
        • Joshi S.
        Maternal micronutrients (folic acid and vitamin B(12)) and omega 3 fatty acids: implications for neurodevelopmental risk in the rat offspring.
        Brain Dev. 2012; 34: 64-71
        • Dangat K.D.
        • Kale A.A.
        • Joshi S.R.
        Maternal supplementation of omega 3 fatty acids to micronutrient-imbalanced diet improves lactation in rat.
        Metabolism. 2011; 60 (Clinical and Experimental): 1318-1324
        • Kulkarni A.
        • Dangat K.
        • Kale A.
        • Sable P.
        • Chavan-Gautam P.
        • Joshi S.
        Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats.
        PLoS One. 2011; 6: e17706
        • Khaire A.
        • Rathod R.
        • Kemse N.
        • Kale A.
        • Joshi S.
        Supplementation with omega-3 fatty acids during gestation and lactation to a vitamin B12-deficient or -supplemented diet improves pregnancy outcome and metabolic variables in Wistar rats.
        Reprod. Fertil. Dev. 2015; 27: 341-350
        • Rathod R.
        • Khaire A.
        • Kemse N.
        • Kale A.
        • Joshi S.
        Maternal omega-3 fatty acid supplementation on vitamin B12 rich diet improves brain omega-3 fatty acids, neurotrophins and cognition in the Wistar rat offspring.
        Brain Dev. 2014; 36: 853-863
        • Sable P.S.
        • Kale A.A.
        • Joshi S.R.
        Prenatal omega 3 fatty acid supplementation to a micronutrient imbalanced diet protects brain neurotrophins in both the cortex and hippocampus in the adult rat offspring.
        Metabolism. 2013; 62 (Clinical and Experimental): 1607-1622
        • Lowry O.H.
        • Rosebrough N.J.
        • Farr A.L.
        • Randall R.J.
        Protein measurement with the Folin phenol reagent.
        J. Biol. Chem. 1951; 193: 265-275
        • Livak K.J.
        • Schmittgen T.D.
        Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.
        Methods. 2001; 25: 402-408
        • Gaines T.A.
        • Zhang W.
        • Wang D.
        • Bukun B.
        • Chisholm S.T.
        • Shaner D.L.
        • Nissen S.J.
        • Patzoldt W.L.
        • Tranel P.J.
        • Culpepper A.S.
        • Grey T.L.
        • Webster T.M.
        • Vencill W.K.
        • Sammons R.D.
        • Jiang J.
        • Preston C.
        • Leach J.E.
        • Westra P.
        Gene amplification confers glyphosate resistance in Amaranthus palmeri.
        Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 1029-1034
        • Meher A.P.
        • Joshi A.A.
        • Joshi S.R.
        Maternal micronutrients, omega-3 fatty acids, and placental PPARgamma expression.
        Appl. Physiol. Nutr. Metab. 2014; 39 (Physiologie Appliquee, Nutrition et Metabolisme): 793-800
        • Meher A.
        • Joshi A.
        • Joshi S.
        Differential regulation of hepatic transcription factors in the Wistar rat offspring born to dams fed folic acid, vitamin B12 deficient diets and supplemented with omega-3 fatty acids.
        PLoS One. 2014; 9: e90209
        • Khot V.
        • Kale A.
        • Joshi A.
        • Chavan-Gautam P.
        • Joshi S.
        Expression of genes encoding enzymes involved in the one carbon cycle in rat placenta is determined by maternal micronutrients (folic acid, vitamin B12) and omega-3 fatty acids.
        BioMed Res. Int. 2014; 2014: 613078
        • Sundrani D.P.
        • Reddy U.S.
        • Chavan-Gautam P.M.
        • Mehendale S.S.
        • Chandak G.R.
        • Joshi S.R.
        Altered methylation and expression patterns of genes regulating placental angiogenesis in preterm pregnancy.
        Reprod. Sci. 2014; 21: 1508-1517
        • Schmittgen T.D.
        • Livak K.J.
        Analyzing real-time PCR data by the comparative CT method.
        Nat. Protoc. 2008; 3: 1101-1108
        • Preynat A.
        • Lapierre H.
        • Thivierge M.C.
        • Palin M.F.
        • Cardinault N.
        • Matte J.J.
        • Desrochers A.
        • Girard C.L.
        Effects of supplementary folic acid and vitamin B(12) on hepatic metabolism of dairy cows according to methionine supply.
        J. Dairy Sci. 2010; 93: 2130-2142
        • Mahalle N.
        • Kulkarni M.V.
        • Garg M.K.
        • Naik S.S.
        Vitamin B12 deficiency and hyperhomocysteinemia as correlates of cardiovascular risk factors in Indian subjects with coronary artery disease.
        J. Cardiol. 2013; 61: 289-294
        • Vuguin P.M.
        • Hartil K.
        • Kruse M.
        • Kaur H.
        • Lin C.L.
        • Fiallo A.
        • Glenn A.S.
        • Patel A.
        • Williams L.
        • Seki Y.
        • Katz E.B.
        • Charron M.J.
        Shared effects of genetic and intrauterine and perinatal environment on the development of metabolic syndrome.
        PLoS One. 2013; 8: e63021
        • Masuyama H.
        • Hiramatsu Y.
        Effects of a high-fat diet exposure in utero on the metabolic syndrome-like phenomenon in mouse offspring through epigenetic changes in adipocytokine gene expression.
        Endocrinology. 2012; 153: 2823-2830
        • Kvilekval K.
        • Lin J.
        • Cheng W.
        • Abumrad N.
        Fatty acids as determinants of triglyceride and cholesteryl ester synthesis by isolated hepatocytes: kinetics as a function of various fatty acids.
        J. Lipid Res. 1994; 35: 1786-1794
        • Kumar K.A.
        • Lalitha A.
        • Pavithra D.
        • Padmavathi I.J.
        • Ganeshan M.
        • Rao K.R.
        • Venu L.
        • Balakrishna N.
        • Shanker N.H.
        • Reddy S.U.
        • Chandak G.R.
        • Sengupta S.
        • Raghunath M.
        Maternal dietary folate and/or vitamin B12 restrictions alter body composition (adiposity) and lipid metabolism in Wistar rat offspring.
        J. Nutr. Biochem. 2013; 24: 25-31
        • Raghunath M.
        • Venu L.
        • Padmavathi I.
        • Kishore Y.D.
        • Ganeshan M.
        • Anand Kumar K.
        • Sainath P.B.
        • Rao K.R.
        Modulation of macronutrient metabolism in the offspring by maternal micronutrient deficiency in experimental animals.
        Indian J. Med. Res. 2009; 130: 655-665
        • Wang W.
        • Tong T.J.
        [The key enzyme of cholesterol synthesis pathway: HMG-CoA reductase and disease].
        Sheng Li Ke Xue Jin Zhan [Prog. Physiol.]. 1999; 30: 5-9
        • Yoon M.J.
        • Lee G.Y.
        • Chung J.J.
        • Ahn Y.H.
        • Hong S.H.
        • Kim J.B.
        Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha.
        Diabetes. 2006; 55: 2562-2570
        • Kadowaki T.
        • Yamauchi T.
        • Kubota N.
        • Hara K.
        • Ueki K.
        • Tobe K.
        Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome.
        J. Clin. Invest. 2006; 116: 1784-1792
        • Shi Y.
        • Burn P.
        Lipid metabolic enzymes: emerging drug targets for the treatment of obesity, Nature reviews.
        Drug Discovery. 2004; 3: 695-710
        • Watt M.J.
        • Spriet L.L.
        Triacylglycerol lipases and metabolic control: implications for health and disease.
        Am. J. Physiol. Endocrinol. Metab. 2010; 299: E162-E168
        • Willumsen N.
        • Hexeberg S.
        • Skorve J.
        • Lundquist M.
        • Berge R.K.
        Docosahexaenoic acid shows no triglyceride-lowering effects but increases the peroxisomal fatty acid oxidation in liver of rats.
        J. Lipid Res. 1993; 34: 13-22
        • Bremer A.A.
        • Stanhope K.L.
        • Graham J.L.
        • Cummings B.P.
        • Ampah S.B.
        • Saville B.R.
        • Havel P.J.
        Fish oil supplementation ameliorates fructose-induced hypertriglyceridemia and insulin resistance in adult male rhesus macaques.
        J. Nutr. 2014; 1445-11. 2014;
        • Froyland L.
        • Vaagenes H.
        • Asiedu D.K.
        • Garras A.
        • Lie O.
        • Berge R.K.
        Chronic administration of eicosapentaenoic acid and docosahexaenoic acid as ethyl esters reduced plasma cholesterol and changed the fatty acid composition in rat blood and organs.
        Lipids. 1996; 31: 169-178
        • Liu X.
        • Xue Y.
        • Liu C.
        • Lou Q.
        • Wang J.
        • Yanagita T.
        • Xue C.
        • Wang Y.
        Eicosapentaenoic acid-enriched phospholipid ameliorates insulin resistance and lipid metabolism in diet-induced-obese mice.
        Lipids Health Dis. 2013; 12: 109
        • Al-Eryan N.H.M.
        • Fatima A.A.
        • Al-Qaraawi M.A.
        Protective effects of vitamin B 12supplementation on cognition and brain atrophy in elderly rats model of hyperhomocysteinemia induced by L-methionine.
        J. Nat. Sci. Math. 2012; 5: 155-178
        • Kalyoncu U.
        • Buyukasik Y.
        • Akdogan A.
        • Karadag O.
        • Bilgen S.A.
        • Kiraz S.
        • Ertenli I.
        • Calguneri M.
        Increased serum vitamin B12 levels are associated with adult-onset Still’s disease with reactive macrophage activation syndrome.
        Joint Bone Spine: Revue du Rhum. 2010; 77: 131-134
        • Kaur G.
        • Sinclair A.J.
        • Cameron-Smith D.
        • Barr D.P.
        • Molero-Navajas J.C.
        • Konstantopoulos N.
        Docosapentaenoic acid (22:5n-3) down-regulates the expression of genes involved in fat synthesis in liver cells.
        Prostaglandins Leukot. Essent. Fatty Acids. 2011; 85: 155-161
        • Ikeda I.
        • Cha J.Y.
        • Yanagita T.
        • Nakatani N.
        • Oogami K.
        • Imaizumi K.
        • Yazawa K.
        Effects of dietary alpha-linolenic, eicosapentaenoic and docosahexaenoic acids on hepatic lipogenesis and beta-oxidation in rats.
        Biosci. Biotechnol. Biochem. 1998; 62: 675-680
        • Fiamoncini J.
        • Turner N.
        • Hirabara S.M.
        • Salgado T.M.
        • Marcal A.C.
        • Leslie S.
        • da Silva S.M.
        • Deschamps F.C.
        • Luz J.
        • Cooney G.J.
        • Curi R.
        Enhanced peroxisomal beta-oxidation is associated with prevention of obesity and glucose intolerance by fish oil-enriched diets.
        Obesity (Silver Spring, Md.). 2013; 21: 1200-1207
        • Bagley H.N.
        • Wang Y.
        • Campbell M.S.
        • Yu X.
        • Lane R.H.
        • Joss-Moore L.A.
        Maternal docosahexaenoic acid increases adiponectin and normalizes IUGR-induced changes in rat adipose deposition.
        J. Obes. 2013; 2013: 312153