Advertisement

Deleterious effects of lard-enriched diet on tissues fatty acids composition and hypothalamic insulin actions

Published:October 15, 2015DOI:https://doi.org/10.1016/j.plefa.2015.10.003

      Abstract

      Altered tissue fatty acid (FA) composition may affect mechanisms involved in the control of energy homeostasis, including central insulin actions. In rats fed either standard chow or a lard-enriched chow (high in saturated/low in polyunsaturated FA, HS-LP) for eight weeks, we examined the FA composition of blood, hypothalamus, liver, and retroperitoneal, epididymal and mesenteric adipose tissues. Insulin-induced hypophagia and hypothalamic signaling were evaluated after intracerebroventricular insulin injection.
      HS-LP feeding increased saturated FA content in adipose tissues and serum while it decreased polyunsaturated FA content of adipose tissues, serum, and liver. Hypothalamic C20:5n-3 and C20:3n-6 contents increased while monounsaturated FA content decreased. HS-LP rats showed hyperglycemia, impaired insulin-induced hypophagia and hypothalamic insulin signaling.
      The results showed that, upon HS-LP feeding, peripheral tissues underwent potentially deleterious alterations in their FA composition, whist the hypothalamus was relatively preserved. However, hypothalamic insulin signaling and hypophagia were drastically impaired. These findings suggest that impairment of hypothalamic insulin actions by HS-LP feeding was not related to tissue FA composition.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ribeiro E.B.
        • Telles M.M.
        • Oyama L.M.
        • et al.
        Hypothalamic Serotonin in the Control of Food Intake: Physiological Interactions and Effect of Obesity, Focus on Nutrition Research.
        Nova Science Publishers, New York, NY2006: 121-148
        • Schwatz M.W.
        Central nervous system regulation of food intake.
        Obesity. 2006; 14: 1S-8S
        • Baskin D.G.
        • Lattermann D.F.
        • Seeley R.J.
        • et al.
        Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight.
        Brain Res. 1999; 848: 114-123
        • Pimentel G.D.
        • Dornellas A.P.
        • Rosa J.C.
        • et al.
        High-fat diets rich in soy or fish oil distinctly alter hypothalamic insulin signaling in rats.
        J. Nutr. Biochem. 2010; 23: 822-828
        • Ketterer C.
        • Tschritter O.
        • Preissl H.
        • et al.
        Insulin sensitivity of the human brain.
        Diabetes Res. Clin. Pract. 2011; 1: 47-51
        • Carvalheira J.B.
        • Ribeiro E.B.
        • Araújo E.P.
        • et al.
        Selective impairment of insulin signaling in the hypothalamus of obese Zucker rats.
        Diabetologia. 2003; 46: 1629-1640
        • Niswender K.D.
        • Schwartz M.W.
        Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities.
        Front. Neuroendocrinol. 2003; 24: 1-10
        • Zierath J.R.
        • Wallberg-Henriksson H.
        From receptor to effector: insulin signal transduction in skeletal muscle from type II diabetic patients.
        Ann. N.Y. Acad. Sci. 2002; 967: 120-134
        • Du Y.
        • Wei T.
        Inputs and outputs of insulin receptor.
        Protein Cell. 2014; 5: 203-213
        • Huang C.
        • Wu M.
        • Du J.
        • et al.
        Systematic modeling for the insulin signaling network mediated by IRS(1) and IRS(2).
        J. Theor. Biol. 2014; 355: 40-52https://doi.org/10.1016/j.jtbi.2014.03.030
        • Gerozissis K.
        Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies.
        Eur. J. Pharmacol. 2008; 585: 38-49
        • Battú C.E.
        • Rieger D.
        • Loureiro S.
        • et al.
        Alterations of PI3K and AKT signaling pathways in the hippocampus and hypothalamus of Wistar rats treated with highly palatable food.
        Nutr. Neurosci. 2012; 15: 10-17
        • Prada P.O.
        • Quaresma P.G.
        • Caricilli A.M.
        • et al.
        Tub has a key role in insulin and leptin signaling and action in vivo in hypothalamic nuclei.
        Diabetes. 2013; 62: 137-148
        • Melo A.M.
        • Benatti R.O.
        • Ignacio-Souza L.M.
        • et al.
        Hypothalamic endoplasmic reticulum stress and insulin resistance in offspring of mice dams fed high-fat diet during pregnancy and lactation.
        Metabolism. 2014; 63: 682-692
        • Bertelli D.F.
        • Coope A.
        • Caricilli A.M.
        • et al.
        Inhibition of 72 kDa inositol polyphosphate 5-phosphatase E improves insulin signal transduction in diet-induced obesity.
        J. Endocrinol. 2013; 217: 131-140
        • Cintra D.E.
        • Ropelle E.R.
        • Moraes J.C.
        • et al.
        Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity.
        PLoS One. 2012; 7: e30571
        • Bueno A.A.
        • Oyama L.M.
        • de Macedo Motoyama C.S.
        • et al.
        Long chain saturated fatty acids increase haptoglobin gene expression in C57BL/6J mice adipose tissue and 3T3-L1 cells.
        Eur. J. Nutr. 2010; 49: 235-241
        • Estadella D.
        • da Penha Oller do Nascimento C.M
        • Oyama L.M.
        • et al.
        Lipotoxicity: effects of dietary saturated and transfatty acids.
        Mediators Inflamm. 2013; 2013: 137579https://doi.org/10.1155/2013/137579
        • Buettner R.
        • Schölmerich J.
        • Bollheime L.C.
        High-fat diets: modeling the metabolic disorders of human obesity in rodents.
        Obesity. 2007; 15: 798-808
        • Van Meer G.
        • Hoetzel S.
        Sphingolipid topology and the dynamic organization and function of membrane proteins.
        FEBS Lett. 2009; 584: 1800-1805
        • Riccardi G.
        • Giacco R.
        • Rivellese A.A.
        Dietary fat, insulin sensitivity and the metabolic syndrome.
        Clin. Nutr. 2004; 23: 447-456
        • Chechi K.
        • Herzberg G.R.
        • Cheema S.K.
        Maternal dietary fat intake during gestation and lactation alters tissue fatty acid composition in the adult offspring of C57Bl/6 mice.
        Prostalglandins Leukot Essent Fat. Acids. 2010; 83: 97-104
        • Wainwright P.E.
        Dietary essential fatty acids and brain function: a developmental perspective on mechanisms.
        Proc. Nutr. Soc. 2002; 61: 61-69
        • Liu Q.
        • Smith M.A.
        • Avilá J.
        • et al.
        Alzheimer-specific epitopes of tau represent lipid peroxidation-induced conformations.
        Free Radic. Biol. Med. 2005; 38: 746-754
        • Gow R.V.
        • Sumich A.
        • Vallee-Tourangeau F.
        • et al.
        Omega-3 fatty acids are related to abnormal emotion processing in adolescent boys with attention deficit hyperactivity disorder.
        Prostaglandins Leukot Essent Fat. Acids. 2013; 88: 419-429
        • Albuquerque K.T.
        • Sardinha F.L.
        • Telles M.M.
        • et al.
        Intake of trans fatty acid-rich hydrogenated fat during pregnancy and lactation inhibits the hypophagic effect of central insulin in the adult offspring.
        Nutrition. 2006; 22: 820-829
        • Fedor D.
        • Kelley D.S.
        Prevention of insulin resistance by n-3 polyunsaturated fatty acids.
        Curr. Opin. Clin. Nutr. Metab. Care. 2009; 12: 138-146
        • Bueno A.A.
        • Oyama L.M.
        • Oliveira C.
        • et al.
        Effects of different fatty acids and dietary lipids on adiponectin gene expression in 3T3-L1 cells and C57BL/6J mice adipose tissue.
        Eur. J. Physiol. 2008; 455: 701-709
        • Gaiva M.H.
        • Couto R.C.
        • Oyama L.M.
        • et al.
        Polyunsaturated fatty acid rich diets: effect on adipose tissue metabolism in rats.
        Br. J. Nutr. 2001; 86: 371-377
        • Bueno A.A.
        • Ghebremeskel K.
        • Bakheit K.H.
        • et al.
        Dimethyl acetals, an indirect marker of the endogenous antioxidant plasmalogen level, are reduced in blood lipids of Sudanese pre-eclamptic subjects whose background diet is high in carbohydrate.
        J. Obstet. Gynaecol. 2012; 32: 241-246
        • Paxinos G.
        • Watson C.
        The rat brain in stereotaxic coordinates.
        Academic Press Inc., San Diego1986
        • Iuras A.
        • Telles M.M.
        • Andrade I.S.
        • et al.
        L-arginine abolishes the hypothalamic serotonergic activation induced by central interleukin-1β administration to normal rats.
        J. Neuroinflamm. 2013; 10: 147
        • Laemmli U.K.
        Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
        Nature. 1970; 15: 680-685
        • Patel P.
        • Abate N.
        Body fat distribution and insulin resistance.
        Nutrients. 2013; 5: 2019-2027
        • Van Greevenbroek M.M.J.
        • Schalkwijk C.G.
        • Stehouwer C.D.A.
        Obesity-associated low-grade inflammation in type 2 diabetes mellitus: causes and consequences.
        Neth. J. Med. 2013; 71: 174-187
        • Scarpellini E.
        • Tack J.
        Obesity and metabolic syndrome: an inflammatory condition.
        Dig. Dis. 2012; 30: 148-153
        • Woods S.C.
        • Seeley R.J.
        • Rushing P.A.
        • et al.
        A controlled high-fat diet induces an obese syndrome in rats.
        J. Nutr. 2003; 133: 1081-1087
        • Bueno A.A.
        • Oyama L.M.
        • Oliveira C.
        • et al.
        Effects of different fatty acids and dietary lipids on adiponectin gene expression in 3T3-L1 cells and C57BL/6J mice adipose tissue.
        Pflugers Arch. 2008; 455: 701-709
        • Guyenet S.J.
        • Schwartz M.W.
        Clinical review: Regulation of food intake, energy balance, and body fat mass: implications for the pathogenesis and treatment of obesity.
        J. Clin. Endocrinol. Metab. 2012; 97: 745-755
        • Shillabeer G.
        • Lau D.C.
        Regulation of new fat cell formation in rats: the role of dietary fats.
        J. Lipid Res. 1994; 35: 592-600
        • Buettner R.
        • Parhofer K.G.
        • Woenckhaus M.
        • et al.
        Defining high-fat-diet rat models: metabolic and molecular effects of different fat types.
        J. Mol. Endocrinol. 2006; 36: 485-501
        • Schrauwen P.
        • Westerterp K.R.
        The role of high-fat diets and physical activity in the regulation of body weight.
        Br. J. Nutr. 2000; 84: 417-427
        • Gaíva M.H.
        • Couto R.C.
        • Oyama L.M.
        • et al.
        Polynsaturated fatty acid-rich diets: effect on adipose tissue metabolism in rats.
        Br. J. Nutr. 2001; 86: 371-377
        • Preiss-Landl K.
        • Zimmermann R.
        • Hämmerle G.
        • et al.
        Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism.
        Curr. Opin. Lipidol. 2002; 13: 471-481
        • Watanabe R.L.H.
        • Andrade I.S.
        • Telles M.M.
        • et al.
        Long-term consumption of fish oil-enriched diet impairs serotonin hypophagia in rats.
        Cell. Mol. Neurobiol. 2010; 30: 1025-1033
        • Dzeidzic B.
        • Szemraj J.
        • Bartkowiak J.
        • et al.
        Various dietary fats differentially change the gene expression of neuropeptides involved in body weight regulation in rats.
        J. Neuroendocrinol. 2007; 19: 364-373
        • Barson J.R.
        • Karatayev O.
        • Gaysinskaya V.
        • et al.
        Effect of dietary fatty acid composition on food intake, triglycerides, and hypothalamic peptides.
        Regul. Pept. 2012; 173: 13-20
        • Feltrin K.L.
        • Little T.J.
        • Meyer J.H.
        • et al.
        Effects of intraduodenal fatty acids on appetite, antropyloroduodenal motility, and plasma CCK and GLP-1 in humans vary with their chain length.
        Am. J. Physiol. 2004; 287: 524-533
        • Banas S.M.
        • Rouch C.
        • Kassis N.
        • et al.
        A dietary fat excess alters metabolic and neuroendocrine responses before the onset of metabolic diseases.
        Cell. Mol. Neurobiol. 2009; 29: 157-168
        • Sartorius T.
        • Ketterer C.
        • Kullmann S.
        • et al.
        Monounsaturated fat acids prevent the aversive effects of obesity on locomotion brain activity and sleep behaviour.
        Diabetes. 2012; 61: 1669-1679
        • Amusquivar E.
        • Sánchez M.
        • Hyde M.J.
        • et al.
        Influence of fatty acid profile of total parenteral nutrition emulsions on the fatty acid composition of different tissues of piglets.
        Lipids. 2008; 43: 713-722
        • Hulbert A.J.
        • Turner N.
        • Storlien L.H.
        • et al.
        Dietary fats and membrane function: implications for metabolism and disease.
        Biol. Rev. 2005; 80: 155-169
        • Weijers R.N.
        Lipid composition of cell membrane and its relevance in type 2 diabetes mellitus.
        Curr. Diabetes Rev. 2012; 8: 390-400
        • Maedler K.
        • Oberholzer J.
        • Bucher P.
        • et al.
        Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic B-cell turnover and function.
        Diabetes. 2003; 52: 726-733
        • Vessby B.
        • Gustafsson I.B.
        • Tengblad S.
        • et al.
        Indices of fatty acid desaturase activity in healthy human subjects: effects of different types of dietary fat.
        Br. J. Nutr. 2013; 110: 871-879
        • Carver J.D.
        • Benford V.J.
        • Han B.
        • et al.
        The relationship between age and the fatty acid composition of cerebral cortex and erythrocytes in human subjects.
        Brain Res. Bull. 2011; 56: 79-85
        • Bruce J.S.
        • Salter A.M.
        Metabolic fate of oleic acid, palmitic acid and stearic acid in cultured hamster hepatocytes.
        Biochem. J. 1996; 316: 847-852
        • Grandgirard A.
        • Piconneaux A.
        • Sebedio J.L.
        • et al.
        Trans isomers of long-chain n-3 polyunsaturated fatty acids in tissue lipid classes of rats fed with heated linseed oil.
        Reprod. Nutr. Dev. 2015; 38: 17-29
        • Awad A.C.
        • Shin H.S.
        • Romsos D.R.
        • et al.
        Direct desaturation of free myristic acid by hen liver microsomal Delta9-desaturase without prior activation to myristoyl-CoA derivative.
        J. Agric. Food Chem. 2004; 52: 3194-3201
        • Guest J.
        • Garg M.
        • Bilgin A.
        • et al.
        Relationship between central and peripheral fatty acids in human.
        Lipids Health Dis. 2013; 12: 79
        • Moraes J.C.
        • Coope A.
        • Morari J.
        • et al.
        High-fat diet induces apoptosis of hypothalamic neurons.
        Plos One. 2009; 4: e5045
        • Scholljegerdes E.J.
        • Lake S.L.
        • Weston T.R.
        • et al.
        Fatty acid composition of plasma, medial basal hypothalamus, and uterine tissue in primiparous beef cows fed high-linoleate safflower seeds.
        J. Anim. Sci. 2007; 85: 1555-1564
        • Crawford M.A.
        The role of dietary fatty acids in biology: their place in the evolution of the human brain.
        Nutr. Rev. 1992; 50: 3-11
        • Fraser T.
        • Tayler H.
        • Love S.
        Fatty acid composition of frontal, temporal and parietal neocortex in the normal human brain and in Alzheimer׳s disease.
        Neurochem. Res. 2010; 35: 503-513
        • Sardinha F.L.
        • Telles M.M.
        • Albuquerque K.T.
        • et al.
        Gender difference in the effect of intrauterine malnutrition on the central anorexigenic action of insulin in adult rats.
        Nutrition. 2006; 22: 1152-1161
        • Prada P.O.
        • Zecchin H.G.
        • Gasparetti A.L.
        • et al.
        Western diet modulates insulin signaling, c-Jun N-terminal kinase activity, and insulin receptor substrate-1ser307 phosphorylation in a tissue-specific fashion.
        Endocrinology. 2005; 146: 1576-1587
        • Arruda A.P.
        • Milanski M.
        • Coope A.
        • et al.
        Low-grade hypothalamic inflammation leads to defective thermogenesis, insulin resistance, and impaired insulin secretion.
        Endocrinology. 2011; 152: 1314-1326
        • De Souza C.T.
        • Araujo E.P.
        • Bordin S.
        • et al.
        Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus.
        Endocrinology. 2005; 146: 4192-4199
        • Clegg D.J.
        • Gotoh K.
        • Kemp C.
        • et al.
        Consumption of a high-fat diet induces central insulin resistance independent of adiposity.
        Physiol. Behav. 2011; 103: 10-16
        • Downward J.
        Mechanisms and consequences of activation of protein kinase B/Akt.
        Curr. Opin. Cell Biol. 1998; 10: 262-267
        • Chen R.
        • Kim O.
        • Yang J.
        • et al.
        Regulation of Akt/PKB activation by tyrosine phosphorilation.
        J. Biol. Chem. 2001; 276: 31858-31862
        • Carvalho E.
        • Rondinone C.
        • Smith U.
        Insulin resistance in fat cells from obese Zucker rats: evidence for an impaired activation and translocation of protein kinase B and glucose transporter 4.
        Mol. Cell. Biochem. 2000; 206: 7-16
        • Sequea D.A.
        • Sharma N.
        • Arias E.B.
        • et al.
        Calorie restriction enhances insulin-stimulated glucose uptake and Akt phosphorylation in both fast-twitch and slow-twitch skeletal muscle of 24-month-old rats.
        J. Gereontol. Biol. Sci. Med. Sci. 2012; 67: 1276-1285
        • Xu A.W.
        • Kaelin C.B.
        • Takeda K.
        • et al.
        PI3K integrates the action of insulin and leptin on hypothalamic neurons.
        J. Clin. Investig. 2005; 115: 951-958
        • Mayer C.M.
        • Belsham D.D.
        Insulin directly regulates NPY and AgRP gene expression via the MAPK MEK/ERK signal transduction pathway in mHypoE-46 hypothalamic neurons.
        Mol. Cell. Endocrinol. 2009; 307: 99-108
        • Ropelle E.R.
        • Pauli J.R.
        • Prada P.O.
        • et al.
        Inhibition of hypothalamic Foxo1 expression reduced food intake in diet-induced obesity rats.
        J. Physiol. 2009; 587: 2341-2351
        • Velloso L.A.
        The hypothalamic control of feeding and thermogenesis: implications on the development of obesity.
        Arq. Bras. Endocrinol. Metab. 2006; 50: 165-176