Advertisement
Research Article| Volume 115, P41-47, December 2016

Download started.

Ok

Moderate intake of docosahexaenoic acid raises plasma and platelet vitamin E levels in cystic fibrosis patients

Published:October 18, 2016DOI:https://doi.org/10.1016/j.plefa.2016.10.008

      Highlights

      • Lipid peroxidation has been reported to occur in plasma of cystic fibrosis (CF) patients.
      • Moderate intake of docosahexaenoic acid (DHA) may lower oxidative stress.
      • Plasma and platelet vitamin E increased after moderate intake of DHA in CF patients.
      • Our study supports the antioxidant potential of moderate DHA intake in CF patients.

      Abstract

      Patients with cystic fibrosis have increased oxidative stress and impaired antioxidant systems. Moderate intake of docosahexaenoic acid (DHA) may favor the lowering of oxidative stress. In this randomized, double-blind, cross-over study, DHA or placebo capsules, were given daily to 10 patients, 5 mg/kg for 2 weeks then 10 mg/kg DHA for the next 2 weeks (or placebo). After 9 weeks of wash-out, patients took placebo or DHA capsules. Biomarkers of lipid peroxidation and vitamin E were measured at baseline, and after 2 and 4 weeks of treatment in each phase. The proportions of DHA increased both in plasma and platelet lipids after DHA supplementations. The lipid peroxidation markers did not significantly decrease, in spite of a trend, after the first and/or the second dose of DHA but plasma and platelet vitamin E amounts increased significantly after DHA supplementation. Our findings reinforce the antioxidant potential of moderate DHA intake in subjects displaying increased oxidative stress.

      Abbreviations:

      CF (cystic fibrosis), CFTR (cystic fibrosis trans-membrane conductance regulator), TxB2 (thromboxane B2)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Odolczyk N.
        • Fritsch J.
        • Norez C.
        • et al.
        Discovery of novel potent DF508. CFTR correctors that target the nucleotide binding domain.
        EMBO Mol. Med. 2013; 5: 1-18
        • Brown R.K.
        • Kelly F.J.
        Role of free radicals in the pathogenesis of cystic fibrosis.
        Thorax. 1994; 49: 738-742
        • Lezo A.
        • Biasi F.
        • Massarenti P.
        • et al.
        Oxidative stress in stable cystic fibrosis patients: do we need higher antioxidants plasma levels?.
        J. Cyst. Fibros. 2013; 12: 35-41
        • Durieu I.
        • Abbas-Chorta F.
        • Drai J.
        • et al.
        Plasma fatty acids and lipid hydroperoxides increase after antibiotic therapy in cystic fibrosis.
        Eur. Respir. J. 2007; 29: 958-964
        • Collins C.E.
        • Quaggiotto P.
        • Wood L.
        • O’Loughlin E.V.
        • Henry R.L.
        • Garg M.L.
        Elevated plasma levels of F2 alpha isoprostane in cystic fibrosis.
        Lipids. 1999; 34: 551-556
        • Chase H.P.
        • Dupont J.
        Abnormal levels of prostaglandins and fatty acids in blood of children with cystic fibrosis.
        Lancet. 1978; 2: 236-238
        • Freedman S.D.
        • Blanco P.G.
        • Zaman M.M.
        • et al.
        Association of cystic fibrosis with abnormalities in fatty acid metabolism.
        N. Engl. J. Med. 2004; 350: 560-569
        • Ollero M.
        • Astarita G.
        • Guerrera I.C.
        • et al.
        Plasma lipidomics reveals potential prognostic signatures within a cohort of cystic fibrosis patients.
        J. Lipid Res. 2011; 52: 1011-1022
        • Strandvik B.
        • Brönnegrad M.
        • Gilljam H.
        • Carlstedt-Duke J.
        Relation between defective regulation of arachidonic acid release and symptoms in cystic fibrosis.
        Scand. J. Gastroenterol. 1988; : S1-S4
        • von Hundelshausen P.
        • Weber C.
        Platelets as immune cells: bridging inflammation and cardiovascular disease.
        Circ. Res. 2007; 40: 27-40
        • Kapur R.
        • Zufferey A.
        • Boilard E.
        • Semple J.W.
        Nouvelle cuisine: platelets served with inflammation.
        J. Immunol. 2015; 194: 5579-5587
        • Mattoscio D.
        • Evangelista V.
        • De Cristofaro R.
        • Recchiuti A.
        • Pandolfi A.
        • Di Silvestre S.
        • et al.
        Cystic fibrosis transmembrane conductance regulator (CFTR) expression in human platelets: impact on mediators and mechanisms of the inflammatory response.
        FASEB J. 2010; 24: 3970-3980
        • Konig B.
        • Jaeger K.
        • Sage A.
        • Vasil M.
        • Konig W.
        Role of Pseudomonas aeruginosa lipase in inflammatory effector cells (platelets, granulocytes, and monocytes).
        Infect. Immun. 1996; 64: 3252-3285
        • O’Sullivan B.P.
        • Michelson A.D.
        The inflammatory role of platelets in cystic fibrosis.
        Am. J. Respir. Crit. Care Med. 2006; 173: 483-490
        • Stead R.J.
        • Barradas M.A.
        • Mikhailidis D.P.
        • Jeremy J.Y.
        • Hodson M.E.
        • Batten J.C.
        • Dandona P.
        Platelet hyperaggregability in cystic fibrosis.
        Prostaglandins Leukot. Med. 1987; 26: 91-103
        • Guillot N.
        • Caillet E.
        • Laville M.
        • Calzada C.
        • Lagarde M.
        • Véricel E.
        Increasing intakes of the long chain omega-3 docosahexaenoic acid: effects on platelet functions and redox status in healthy men.
        FASEB J. 2009; 23: 2909-2916
        • Véricel E.
        • Colas R.
        • Calzada C.
        • et al.
        Moderate oral supplementation with docosahexaenoic acid improves platelet function and oxidative stress in type 2 diabetic patients.
        Thromb. Haemost. 2015; 114: 289-296
        • Njoroge S.W.
        • Laposata M.
        • Katrangi W.
        • Seegmiller A.C.
        DHA and EPA reverse cystic fibrosis-related FA abnormalities by suppressing FA desaturase expression and activity.
        J. Lipid Res. 2012; 53: 257-265
        • Durieu I.
        • Véricel E.
        • Guichardant D.
        • et al.
        Fatty acids platelets and oxidative markers following intravenous n-3 fatty acids administration in cystic fibrosis: an open pilot observational study.
        J. Cyst. Fibros. 2007; 6: 320-326
        • Lagarde M.
        • Bryon P.A.
        • Guichardant M.
        • Dechavanne M.
        A simple and efficient method for platelet isolation.
        Thromb. Res. 1980; 17: 581-588
        • Bowyer D.E.
        • Leat W.M.
        • Howard A.N.
        • Gresham G.A.
        The determination of the fatty acid composition of serum lipids separated by thin-layer chromatography; and a comparison with column chromatography.
        Biochim. Biophys. Acta. 1963; 70: 423-431
        • Therasse J.
        • Lemonnier F.
        Determination of plasma lipoperoxides by high-performance liquid chromatography.
        J. Chromatogr. 1987; 413: 237-241
        • Croset M.
        • Véricel E.
        • Rigaud M.
        • Hanss M.
        • Courpron P.
        • Dechavanne M.
        • Lagarde M.
        Functions and tocopherol content of blood platelets from elderly people after low intake of purified eicosapentaenoic acid.
        Thromb. Res. 1990; 57: 1-12
        • Burdge G.C.
        • Calder P.C.
        Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults.
        Reprod. Nutr. Dev. 2005; 45: 581-597
        • Freedman S.D.
        • Katz M.H.H.
        • Parker E.M.
        • Laposata M.
        • Urman M.Y.
        • Alvarez J.G.
        A membrane lipid imbalance plays a role in the phenotypic expression of cystic fibrosis in cftr(−/−) mice.
        Proc. Natl. Acad. Sci. USA. 1999; 96: 13995-14000
        • Horrocks L.A.
        • Yeo Y.K.
        Health benefits of docosahexaenoic acid (DHA).
        Pharm. Res. 1999; 40: 211-225
        • Guichardant M.
        • Calzada C.
        • Bernoud-Hubac N.
        • Lagarde M.
        • Véricel E.
        Omega-3 polyunsaturated fatty acids and oxygenated metabolism in atherothrombosis.
        Biochim. Biophys. Acta. 1851; 2015: 485-495
        • Calder P.C.
        Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance.
        Biochim. Biophys. Acta. 1851; 2015: 469-484
        • Al-Turkmani M.R.
        • Freedman S.D.
        • Laposata M.
        Fatty acid alterations and n-3 fatty acid supplementation in cystic fibrosis.
        Prostaglandins Leukot. Ess. Fat. Acids. 2007; 77: 309-318
        • Conquer J.A.
        • Holub B.J.
        Supplementation with an algae source of docosahexaenoic acid increases (n-3) fatty acid status and alters selected risk factors for heart disease in vegetarian subjects.
        J. Nutr. 1996; 126: 3032-3039
        • Praticò D.
        F(2)-isoprostanes: sensitive and specific non-invasive indices of lipid peroxidation in vivo.
        Atherosclerosis. 1999; 147: 1-10
        • Morrow J.D.
        • Roberts 2nd, L.J.
        The isoprostanes. Current knowledge and directions for future research.
        Biochem. Pharm. 1996; 51: 1-9
        • Lancellotti L.
        • D’Orazio C.
        • Mastella G.
        • Mazzi G.
        • Lippi U.
        Deficiency of vitamins E and A in cystic fibrosis is independent of pancreatic function and current enzyme and vitamin supplementation.
        Eur. J. Pediatr. 1996; 155: 281-285
        • Njoroge S.W.
        • Laposata M.
        • Boyd K.L.
        • Seegmiller A.C.
        Polyunsaturated fatty acid supplementation reverses cystic fibrosis-related fatty acid abnormalities in CFTR−/− mice by suppressing fatty acid desaturases.
        J. Nutr. Biochem. 2015; 26: 36-43
        • Mukherjee P.K.
        • Marcheselli V.L.
        • Serhan C.N.
        • Bazan N.G.
        Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress.
        Proc. Natl. Acad. Sci. USA. 2004; 101: 8491-8496
        • Chen P.
        • Véricel E.
        • Lagarde M.
        • Guichardant M.
        Poxytrins, a class of oxygenated products from polyunsaturated fatty acids, potently inhibit blood platelet aggregation.
        FASEB J. 2011; 25: 382-388