Advertisement

Maternal long chain polyunsaturated fatty acid status and pregnancy complications

Published:August 14, 2017DOI:https://doi.org/10.1016/j.plefa.2017.08.002

      Highlights

      • Maternal long chain polyunsaturated fatty acids (LCPUFAs) influences pregnancy complications.
      • An imbalanced ratio of omega-6/omega-3 fatty acids during early developmental stages may result in metabolic programming of adult diseases.
      • Non communicable diseases (NCDs) have their origin during early life.

      Abstract

      Maternal nutrition plays a crucial role in influencing fetal growth and birth outcome. Any nutritional insult starting several weeks before pregnancy and during critical periods of gestation is known to influence fetal development and increase the risk for diseases during later life. Literature suggests that chronic adult diseases may have their origin during early life – a concept referred to as Developmental Origins of Health and Disease (DOHaD) which states that adverse exposures early in life “program” risks for later chronic disorders. Long chain polyunsaturated fatty acids (LCPUFA), mainly omega-6 and omega-3 fatty acids are known to have an effect on fetal programming. The placental supply of optimal levels of LCPUFA to the fetus during early life is extremely important for the normal growth and development of both placenta and fetus. Any alteration in placental development will result in adverse pregnancy outcome such as gestational diabetes mellitus (GDM), preeclampsia, and intrauterine growth restriction (IUGR). A disturbed materno-fetal LCPUFA supply is known to be linked with each of these pathologies. Further, a disturbed LCPUFA metabolism is reported to be associated with a number of metabolic disorders. It is likely that LCPUFA supplementation during early pregnancy may be beneficial in improving the health of the mother, improving birth outcome and thereby reducing the risk of diseases in later life.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Das U.N.
        A perinatal strategy to prevent coronary heart disease.
        Nutrition. 2003; 19: 1022-1027
        • Barker D.J.P.
        • Gluckman P.D.
        • Godfrey K.M.
        • Harding J.E.
        • Owens J.A.
        • Robinson J.S.
        Fetal nutrition and cardiovascular disease in adult life.
        Lancet. 1993; 341: 938
        • Korotkova M.
        • Gabrielsson B.G.
        • Holmang A.
        • Larsson B.M.
        • Hanson L.A.
        • Strandvik B.
        Gender-related long-term effects in adult rats by perinatal dietary ratio of n-6/n-3 fatty acids.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005; 288: 575-579
        • Innis S.M.
        Metabolic programming of long-term outcomes due to fatty acid nutrition in early life.
        Matern. Child. Nutr. 2011; 7: 112-123
        • Mennitti L.V.
        • Oliveira J.L.
        • Morais C.A.
        • et al.
        Type of fatty acids in maternal diets during pregnancy and/or lactation and metabolic consequences of the offspring.
        J. Nutr. Biochem. 2015; 26: 99-111
        • Gow R.V.
        • Hibbeln J.R.
        Omega-3 fatty acid and nutrient deficits in adverse neurodevelopment and childhood behaviours.
        Child. Adolesc. Psychiatr. Clin. N. Am. 2014; 23: 555-590
        • Gómez Candela C.
        • Bermejo López L.M.
        • Loria Kohen V.
        Importance of a balanced omega 6/omega 3 ratio for the maintenance of health: nutritional recommendations.
        Nutr. Hosp. 2011; 26: 323-329
        • Rani A.
        • Meher A.
        • Wadhwani N.
        • Joshi S.
        Role of maternal long-chain polyunsaturated fatty acids in placental development and function.
        (CRC press)in: Duttaroy A.K. Basak S. Human Placental Trophoblast: Impact of Maternal Nutrition. Taylor & Francis group, USA2015: 113-128
        • Simopoulos A.P.
        Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases.
        Biomed. Pharmacother. 2006; 60: 502e7
        • Mistry H.D.
        • Williams P.J.
        The importance of antioxidant micronutrients in pregnancy.
        Oxid. Med. Cell. Longev. 2011; 2011: 841749
        • McArdle H.J.
        • Ashworth C.J.
        Micronutrients in fetal growth and development.
        Br. Med. Bull. 1999; 55: 499-510
        • Muthayya S.
        Maternal nutrition & low birth weight – what is really important?.
        Indian. J. Med. Res. 2009; 130: 600-608
        • Bloomfield F.H.
        • Spiroski A.M.
        • Harding J.E.
        Fetal growth factors and fetal nutrition.
        Semin. Fetal Neonatal Med. 2013; (Epub ahead of print)https://doi.org/10.1016/j.siny.2013.03.003
        • Sacks D.A.
        Determinants of fetal growth.
        Curr. Diab. Rep. 2004; 4: 281-287
        • Fall C.H.
        • Yajnik C.S.
        • Rao S.
        • Davies A.A.
        • Brown N.
        • Farrant H.J.
        Micronutrients and fetal growth.
        J. Nutr. 2003; 133: 1747S-1756S
        • Kontic-Vucinic O.
        • Sulovic N.
        • Radunovic N.
        Micronutrients in women's reproductive health: II. minerals and trace elements.
        Int. J. Fertil. Women’s. Med. 2006; 51: 116-124
        • Keen C.L.
        • Clegg M.S.
        • Hanna L.A.
        • et al.
        The plausibility of micronutrient deficiencies being a significant contributing factor to the occurrence of pregnancy complications.
        J. Nutr. 2003; 133: 1597S-1605S
        • Wu G.
        • Imhoff-Kunsch B.
        • Girard A.W.
        Biological mechanisms for nutritional regulation of maternal health and fetal development.
        Paediatr. Perinat. Epidemiol. 2012; 26: 4-26
        • Simmons R.
        Epigenetics and maternal nutrition: nature v. nurture.
        Proc. Nutr. Soc. 2011; 70: 73-81
        • McMullen S.
        • Mostyn A.
        Animal models for the study of the developmental origins of health and disease.
        Proc. Nutr. Soc. 2009; 68: 306-320
        • Byrne C.D.
        • Phillips D.I.
        Fetal origins of adult disease: epidemiology and mechanisms.
        J. Clin. Pathol. 2000; 53: 822-828
        • McMillen I.C.
        • Robinson J.S.
        Developmental origins of the metabolic syndrome: prediction, plasticity, and programming.
        Physiol. Rev. 2005; 85: 571-633
        • Brenseke B.
        • Prater M.R.
        • Bahamonde J.
        • Gutierrez J.C.
        Current thoughts on maternal nutrition and fetal programming of the metabolic syndrome.
        J. Pregnancy. 2013; 2013: 368461
        • Waterland R.A.
        • Michels K.B.
        Epigenetic epidemiology of the developmental origins hypothesis.
        Annu. Rev. Nutr. 2007; 27: 363-388
        • Wu G.
        • Bazer F.W.
        • Cudd T.A.
        • Meininger C.J.
        • Spencer T.E.
        Maternal nutrition and fetal development.
        J. Nutr. 2004; 134: 2169-2172
        • de Oliveira J.C.
        • Grassiolli S.
        • Gravena C.
        • de Mathias P.C.
        Early postnatal low-protein nutrition, metabolic programming and the autonomic nervous system in adult life.
        Nutr. Metab. (Lond.). 2012; 9: 80
        • Adamo K.B.
        • Ferraro Z.M.
        • Brett K.E.
        Can we modify the intrauterine environment to halt the intergenerational cycle of obesity?.
        Int. J. Environ. Res. Public Health. 2012; 9: 1263-1307
        • Swanson J.M.
        • Entringer S.
        • Buss C.
        • Wadhwa P.D.
        Developmental origins of health and disease: environmental exposures.
        Semin. Reprod. Med. 2009; 27: 391-402
        • Burdge G.C.
        • Hanson M.A.
        • Slater-Jefferies J.L.
        • Lillycrop K.A.
        Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life?.
        Br. J. Nutr. 2007; 97: 1036-1046
        • Choi S.W.
        • Mason J.B.
        Folate and carcinogenesis: an integrated scheme.
        J. Nutr. 2000; 130: 129-132
        • Ho E.
        • Beaver L.M.
        • Williams D.E.
        • Dashwood R.H.
        Dietary factors and epigenetic regulation for prostate cancer prevention.
        Adv. Nutr. 2011; 2: 497-510
        • Zeisel S.H.
        Nutrition in pregnancy: the argument for including a source of choline.
        Int. J. Women’s. Health. 2013; 5: 193-199
        • James S.J.
        • Cutler P.
        • Melnyk S.
        • et al.
        Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism.
        Am. J. Clin. Nutr. 2004; 80: 1611-1617
        • Vance D.E.
        • Walkey C.J.
        • Cui Z.
        Phosphatidylethanolamine N-methyltransferase from liver.
        Biochim. Biophys. Acta. 1997; 1348: 142-150
        • DeLong C.J.
        • Shen Y.J.
        • Thomas M.J.
        • Cui Z.
        Molecular distinction of phosphatidylcholine synthesis between the CDP-choline pathway and phosphatidylethanolamine methylation pathway.
        J. Biol. Chem. 1999; 274: 29683-29688
        • Pynn C.J.
        • Henderson N.G.
        • Clark H.
        • Koster G.
        • Bernhard W.
        • Postle A.D.
        Specificity and rate of human and mouse liver and plasma phosphatidylcholine synthesis analyzed in vivo.
        J. Lipid Res. 2011; 52: 399-407
        • Selley M.L.
        A metabolic link between S-adenosylhomocysteine and polyunsaturated fatty acid metabolism in Alzheimer's disease.
        Neurobiol. Aging. 2007; 28: 1834-1839
        • Dhobale M.
        • Joshi S.
        Altered maternal micronutrients (folic acid, vitamin B(12)) and omega 3 fatty acids through oxidative stress may reduce neurotrophic factors in preterm pregnancy.
        J. Matern. Fetal Neonatal Med. 2012; 25: 317-323
        • Sable P.S.
        • Dangat K.D.
        • Joshi A.A.
        • Joshi S.R.
        Maternal omega 3 fatty acid supplementation during pregnancy to a micronutrient-imbalanced diet protects postnatal reduction of brain neurotrophins in the rat offspring.
        Neuroscience. 2012; 217: 46-55
        • Sundrani D.P.
        • Chavan Gautam P.M.
        • Mehendale S.S.
        • Joshi S.R.
        Altered metabolism of maternal micronutrients and omega 3 fatty acids epigenetically regulate matrix metalloproteinases in preterm pregnancy: a novel hypothesis.
        Med. Hypotheses. 2011; 77: 878-883
        • Kulkarni A.
        • Dangat K.
        • Kale A.
        • Sable P.
        • Chavan-Gautam P.
        • Joshi S.
        Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats.
        PLoS. One. 2011; 6: e17706
        • Kulkarni A.
        • Mehendale S.
        • Pisal H.
        • et al.
        Association of omega-3 fatty acids and homocysteine concentrations in pre-eclampsia.
        Clin. Nutr. 2011; 30: 60-64
        • Kale A.
        • Naphade N.
        • Sapkale S.
        • et al.
        Reduced folic acid, vitamin B12 and docosahexaenoic acid and increased homocysteine and cortisol in never-medicated schizophrenia patients: implications for altered one-carbon metabolism.
        Psychiatry Res. 2010; 175: 47-53
        • Sundrani D.
        • Khot V.
        • Joshi S.
        Epigenetic biomarkers and clinical applications.
        in: Garcia-Gimenez Dr. Jose Luis Epigenetic Biomarkers and Diagnostics DNA Methylation for Prediction of Adverse Pregnancy Outcome, Series, Translational Epigenetics. Elsevier, San Diego, USA2015: 351-376
        • Khot V.
        • Chavan-Gautam P.
        • Joshi S.
        Proposing interactions between maternal phospholipids and the one carbon cycle: a novel mechanism influencing the risk for cardiovascular diseases in the offspring in later life.
        Life. Sci. 2015; 129: 16-21
        • Burlina S.
        • Dalfrà M.G.
        • Barison A.
        • et al.
        Plasma phospholipid fatty acid composition and desaturase activity in women with gestational diabetes mellitus before and after delivery.
        Acta Diabetol. 2016; (Epub ahead of print)https://doi.org/10.1007/s00592-016-0901-x
        • Innis S.M.
        Dietary (n-3) fatty acids and brain development.
        J. Nutr. 2007; 137: 855-859
        • Herrera E.
        • Desoye G.
        Maternal and fetal lipid metabolism under normal and gestational diabetic conditions.
        Horm. Mol. Biol. Clin. Investig. 2016; 26: 109-127
        • Simopoulos A.P.
        The omega-6/omega-3 fatty acid ratio, genetic variation, and cardiovascular disease.
        Asia Pac. J. Clin. Nutr. 2008; 17: 131-134
        • Simopoulos A.P.
        Human requirement for n-3 polyunsaturated fatty acids.
        Poult. Sci. 2000; 79: 961-970
        • Russo G.L.
        Dietary n-6 and n-3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention.
        Biochem. Pharmacol. 2009; 77: 937-946
        • Allen K.G.
        • Harris M.A.
        The role of n-3 fatty acids in gestation and parturition.
        Exp. Biol. Med. 2001; 226: 498-506
        • Connor W.E.
        Importance of n-3 fatty acids in health and disease.
        Am. J. Clin. Nutr. 2000; 71: 171S-175S
        • Harris W.S.
        The omega-6/omega-3 ratio and cardiovascular disease risk: uses and abuses.
        Curr. Atheroscler. Rep. 2006; 8: 453-459
        • Haggarty P.
        Fatty acid supply to the human fetus.
        Annu. Rev. Nutr. 2010; 30: 237-255
        • Jump D.B.
        The biochemistry of n-3 polyunsaturated fatty acids.
        J. Biol. Chem. 2002; 277: 8755-8758
        • Calder P.C.
        Omega-3 fatty acids and inflammatory processes.
        Nutrients. 2010; 2: 355-374
        • Anderson B.M.
        • Ma D.W.
        Are all n-3 polyunsaturated fatty acids created equal?.
        Lipids Health Dis. 2009; 8: 33
        • Patterson E.
        • Wall R.
        • Fitzgerald G.F.
        • Ross R.P.
        • Stanton C.
        Health implications of high dietary omega-6 polyunsaturated fatty acids.
        J. Nutr. Metab. 2012; 2012: 539426
        • James M.J.
        • Gibson R.A.
        • Cleland L.G.
        Dietary polyunsaturated fatty acids and inflammatory mediator production.
        Am. J. Clin. Nutr. 2000; 71: 343S-348S
        • Kremer J.M.
        n-3 fatty acid supplements in rheumatoid arthritis.
        Am. J. Clin. Nutr. 2000; 71: 349-351
        • Simopoulos A.P.
        The importance of the ratio of omega-6/omega-3 essential fatty acids.
        Biomed. Pharmacother. 2002; 56: 365-379
        • Yehuda S.
        Omega-6/omega-3 ratio and brain-related functions.
        World Rev. Nutr. Diet. 2003; 92: 37-56
        • Innis S.M.
        Essential fatty acids in growth and development.
        Prog. Lipid Res. 1991; 30: 39-103
        • Lauritzen L.
        • Carlson S.E.
        • SE
        Maternal fatty acid status during pregnancy and lactation and relation to newborn and infant status.
        Matern. Child. Nutr. 2011; 7: 41-58
        • Duttaroy A.K.
        Transport of fatty acids across the human placenta: a review.
        Prog. Lipid Res. 2009; 48: 52-61
        • Crawford M.A.
        • Hassam A.G.
        • Stevens P.A.
        Essential fatty acid requirements in pregnancy and lactation with special reference to brain development.
        Prog. Lipid Res. 1981; 20: 31-40
        • Birch E.E.
        • Castañeda Y.S.
        • Wheaton D.H.
        • Birch D.G.
        • Uauy R.D.
        • Hoffman D.R.
        Visual maturation of term infants fed long-chain polyunsaturated fatty acid-supplemented or control formula for 12 mo.
        Am. J. Clin. Nutr. 2005; 81: 871-879
        • Birch E.E.
        • Garfield S.
        • Castañeda Y.
        • Hughbanks-Wheaton D.
        • Uauy R.
        • Hoffman D.
        • D
        Visual acuity and cognitive outcomes at 4 years of age in a double-blind, randomized trial of long-chain polyunsaturated fatty acid-supplemented infant formula.
        Early Hum. Dev. 2007; 83: 279-284
        • Wainwright P.E.
        Dietary essential fatty acids and brain function: a developmental perspective on mechanisms.
        Proc. Nutr. Soc. 2002; 61: 61-69
        • Stillwell W.
        • Wassall S.R.
        Docosahexaenoic acid: membrane properties of a unique fatty acid.
        Chem. Phys. Lipids. 2003; 126: 1-27
        • Gil-Sánchez A.
        • Demmelmair H.
        • Parrilla J.J.
        • Koletzko B.
        • Larqué E.
        Mechanisms involved in the selective transfer of long chain polyunsaturated fatty acids to the fetus.
        Front. Genet. 2011; 2: 57
        • Lund E.K.
        Health benefits of seafood; is it just the fatty acids?.
        Food Chem. 2013; 140: 413-420
        • Calder P.C.
        Fatty acids and gene expression related to inflammation.
        Nestle Nutr. Workshop Ser. Clin. Perform. Program. 2002; 7: 19-36
        • SanGiovanni, J.P.
        • Chew E.Y.
        The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina.
        Prog. Retin. Eye Res. 2005; 24: 87-138
        • Tassoni D.
        • Kaur G.
        • Weisinger R.S.
        • Sinclair A.J.
        The role of eicosanoids in the brain.
        Asia Pac. J. Clin. Nutr. 2008; 17: 220-228
        • Wauben I.P.M.
        • Wainwright P.E.
        The influence of neonatal nutrition on behavioural development: a critical appraisal.
        Nutr. Rev. 1999; 57: 35-44
        • Greenberg J.A.
        • Bell S.J.
        • Ausdal W.V.
        Omega-3 fatty acid supplementation during pregnancy.
        Rev. Obstet. Gynecol. 2008; 1: 162-169
        • Duttaroy A.K.
        Cellular uptake of long-chain fatty acids: role of membrane-associated fatty acid-binding/transport proteins.
        Cell. Mol. Life. Sci. 2000; 57: 1360-1372
        • Lauritzen L.
        • Fewtrell M.
        • Agostoni C.
        Dietary arachidonic acid in perinatal nutrition: a commentary.
        Pediatr. Res. 2015; 77: 263-269
        • Morse N.L.
        Benefits of docosahexaenoic acid, folic acid, vitamin D and iodine on foetal and infant brain development and function following maternal supplementation during pregnancy and lactation.
        Nutrients. 2012; 4: 799-840
        • Hornstra G.
        Importance of polyunsaturated fatty acids of the n-6 and n-3 families for early human development.
        Eur. J. Lipid Sci. Technol. 2001; 103: 379-389
        • Uauy R.
        • Mena P.
        • Rojas C.
        Essential fatty acids in early life: structural and functional role.
        Proc. Nutr. Soc. 2000; 59: 3-15
        • Krabbendam L.
        • Bakker E.
        • Hornstra G.
        • van Os J.
        Relationship between DHA status at birth and child problem behaviour at 7 years of age.
        Prostaglandins Leukot. Essent. Fat. Acids. 2007; 76: 29-34
        • Cetin I.
        • Alvino G.
        • Cardellicchio M.
        Long chain fatty acids and dietary fats in fetal nutrition.
        J. Physiol. 2009; 587: 3441-3451
        • Burdge G.C.
        • Calder P.C.
        Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults.
        Reprod. Nutr. Dev. 2005; 45: 581-597
        • Zhou H.
        • Liu R.
        ER stress and hepatic lipid metabolism.
        Front. Genet. 2014; 5: 112
        • Vrablik T.L.
        • Watts J.L.
        Emerging roles for specific fatty acids in developmental processes.
        Genes. Dev. 2012; 26: 631-637
        • Nakamura M.T.
        • Nara T.Y.
        Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases.
        Annu. Rev. Nutr. 2004; 24: 345-376
        • Rodriguez A.
        • Sarda P.
        • Nessmann C.
        • Boulot P.
        • Leger C.L.
        • Descomps B.
        Delta6- and delta5- desaturase activities in the human fetal liver: kinetic aspects.
        J. Lipid Res. 1998; 39: 1825-1832
        • Flowers M.T.
        • Ntambi J.M.
        Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism.
        Curr. Opin. Lipidol. 2008; 19: 248-256
        • Slagsvold J.E.
        • Thorstensen K.
        • Kvitland M.
        • et al.
        Fatty acid desaturase expression in human leucocytes correlates with plasma phospholipid fatty acid status.
        Scand. J. Clin. Lab. Invest. 2009; 69: 496-504
        • Leonard A.E.
        • Pereira S.L.
        • Sprecher H.
        • Huang Y.S.
        Elongation of long-chain fatty acids.
        Prog. Lipid Res. 2004; 43: 36-54
        • Gil-Sánchez A.
        • Koletzko B.
        • Larqué E.
        Current understanding of placental fatty acid transport.
        Curr. Opin. Clin. Nutr. Metab. Care. 2012; 15: 265-272
        • Hanebutt F.L.
        • Demmelmair H.
        • Schiessl B.
        • Larqué E.
        • Koletzko B.
        Long-chain polyunsaturated fatty acid (LC-PUFA) transfer across the placenta.
        Clin. Nutr. 2008; 27: 685-693
        • Duttaroy A.K.
        Fetal growth and development: roles of fatty acid transport proteins and nuclear transcription factors in human placenta.
        Indian. J. Exp. Biol. 2004; 42: 747-757
        • van der Vusse G.J.
        • van Bilsen M.
        • Glatz J.F.
        Cardiac fatty acid uptake and transport in health and disease.
        Cardiovasc. Res. 2000; 45: 279-293
        • Stahl A.
        • Gimeno R.E.
        • Tartaglia L.A.
        • Lodish H.F.
        Fatty acid transport proteins: a current view of a growing family.
        Trends Endocrinol. Metab. 2001; 12: 266-273
        • Veerkamp J.H.
        • van Kuppevelt T.H.
        • Maatman R.G.
        • Prinsen C.F.
        Structural and functional aspects of cytosolic fatty acid-binding proteins.
        Prostaglandins Leukot. Essent. Fat. Acids. 1993; 49: 887-906
        • Myllynen P.
        • Vähäkangas K.
        Placental transfer and metabolism: an overview of the experimental models utilizing human placental tissue.
        Toxicol. In Vitr. 2013; 27: 507-512
        • Cetin I.
        • Berti C.
        • Calabrese S.
        Role of micronutrients in the periconceptional period.
        Hum. Reprod. Update. 2010; 16: 80-95
        • Burton G.J.
        • Jauniaux E.
        • Charnock-Jones D.S.
        The influence of the intrauterine environment on human placental development.
        Int. J. Dev. Biol. 2010; 54: 303-312
        • Jansson T.
        • Powell T.L.
        Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches.
        Clin. Sci. 2007; 113: 1e13
        • Harding J.
        Nutritional basis for the fetal origins of adult disease.
        in: Langley-Evans S.C. Fetal Nutrition and Adult Disease. CABI, Wallingford, UK2004: 21-54
        • Barker D.J.
        • Lampl M.
        • Roseboom T.
        • Winder N.
        Resource allocation in utero and health in later life.
        Placenta. 2012; 33: e30-e34
        • Myatt L.
        Placental adaptive responses and fetal programming.
        J. Physiol. 2006; 572: 25-30
        • Novakovic B.
        • Saffery R.
        The ever growing complexity of placental epigenetics - role in adverse pregnancy outcomes and fetal programming.
        Placenta. 2012; 33: 959-970
        • Burton G.J.
        • Jauniaux E.
        Oxidative stress.
        Best. Pract. Res. Clin. Obstet. Gynaecol. 2011; 25: 287-299
        • Gauster M.
        • Hiden U.
        • Blaschitz A.
        • et al.
        Dysregulation of placental endothelial lipase and lipoprotein lipase in intrauterine growth restricted pregnancies.
        J. Clin. Endocrinol. Metab. 2007; 92: 2256-2263
        • Buchanan T.A.
        • Xiang A.
        • Kjos S.L.
        • Watanabe R.
        What is gestational diabetes?.
        Diabetes Care. 2007; 30: S105-S111
        • Qiu C.
        • Enquobahrie D.A.
        • Frederick I.O.
        • et al.
        Early pregnancy urinary biomarkers of fatty acid and carbohydrate metabolism in pregnancies complicated by gestational diabetes.
        Diabetes Res. Clin. Pract. 2014; 104: 393-400
        • Mpondo B.C.
        • Ernest A.
        • Dee H.E.
        Gestational diabetes mellitus: challenges in diagnosis and management.
        J. Diabetes Metab. Disord. 2015; 14: 42
        • Boney C.M.
        • Verma A.
        • Tucker R.
        • Vohr B.R.
        Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus.
        Pediatrics. 2005; 115: e290-296
        • Crowther C.A.
        • Hiller J.E.
        • Moss J.R.
        • McPhee A.J.
        • Jeffries W.S.
        • Robinson J.S.
        Effect of treatment of gestational diabetes mellitus on pregnancy outcomes.
        N. Engl. J. Med. 2005; 352: 2477-2486
        • Gauster M.
        • Desoye G.
        • Totsch M.
        • Hiden U.
        The placenta and gestational diabetes mellitus.
        Curr. Diab. Rep. 2012; 12: 16-23
        • Brett K.E.
        • Ferraro Z.M.
        • Yockell-Lelievre J.
        • Gruslin A.
        • Adamo K.B.
        Maternal-fetal nutrient transport in pregnancy pathologies: the role of the placenta.
        Int. J. Mol. Sci. 2014; 15: 16153-16185
        • Prieto-Sanchez M.T.
        • Ruiz-Palacios M.
        • Blanco-Carnero J.E.
        • et al.
        Placental MFSD2a transporter is related to decreased DHA in cord blood of women with treated gestational diabetes.
        Clin. Nutr. 2016; (pii: S0261-5614)(16)(00036-4.)(Epub ahead of print)https://doi.org/10.1016/j.clnu.2016.01.014
        • Schaefer-Graf U.M.
        • Graf K.
        • Kulbacka I.
        • et al.
        Maternal lipids as strong determinants of fetal environment and growth in pregnancies with gestational diabetes mellitus.
        Diabetes Care. 2008; 31: 1858-1863
        • Herrera E.
        • Ortega-Senovilla H.
        Disturbances in lipid metabolism in diabetic pregnancy - Are these the cause of the problem?.
        Best. Pract. Res. Clin. Endocrinol. Metab. 2010; 24: 515-525
        • American Diabetes Association
        Diagnosis and classification of diabetes mellitus.
        Diabetes Care. 2013; 36: S11-S66
        • Brenner R.R.
        Hormonal modulation of delta6 and delta5 desaturases: case of diabetes.
        Prostaglandins Leukot. Essent. Fat. Acids. 2003; 68: 151-162
        • Kuhl C.
        Insulin secretion and insulin resistance in pregnancy and GDM, Implications for diagnosis and management.
        Diabetes. 1991; 40: 18-24
        • Zhao J.P.
        • Levy E.
        • Shatenstein B.
        • et al.
        Longitudinal circulating concentrations of long-chain polyunsaturated fatty acids in the third trimester of pregnancy in gestational diabetes.
        Diabet. Med. 2016; 33: 939-946
        • Min Y.
        • Ghebremeskel K.
        • Lowy C.
        • Thomas B.
        • Crawford M.A.
        Adverse effect of obesity on red cell membrane arachidonic and docosahexaenoic acids in gestational diabetes.
        Diabetologia. 2004; 47: 75-81
        • Wijendran V.
        • Bendel R.B.
        • Couch S.C.
        • et al.
        Maternal plasma phospholipid polyunsaturated fatty acids in pregnancy with and without gestational diabetes mellitus: relations with maternal factors.
        Am. J. Clin. Nutr. 1999; 70: 53-61
        • Thomas B.
        • Ghebremeskel K.
        • Lowy C.
        • Min Y.
        • Crawford M.A.
        Plasma AA and DHA levels are not compromised in newly diagnosed gestational diabetic women.
        Eur. J. Clin. Nutr. 2004; 58: 1492-1497
        • Ortega-Senovilla H.
        • Alvino G.
        • Taricco E.
        • Cetin I.
        • Herrera E.
        Gestational diabetes mellitus upsets the proportion of fatty acids in umbilical arterial but not venous plasma.
        Diabetes Care. 2009; 32: 120-122
        • Bitsanis D.
        • Ghebremeskel K.
        • Moodley T.
        • Crawford M.A.
        • Djahanbakhch O.
        Gestational diabetes mellitus enhances arachidonic and docosahexaenoic acids in placental phospholipids.
        Lipids. 2006; 41: 341-346
        • Araujo J.R.
        • Correia-Branco A.
        • Ramalho C.
        • Keating E.
        • Martel F.
        Gestational diabetes mellitus decreases placental uptake of long-chain polyunsaturated fatty acids: involvement of long-chain acyl-CoA synthetase.
        J. Nutr. Biochem. 2013; 24: 1741-1750
        • Pagán A.
        • Prieto-Sánchez M.T.
        • Blanco-Carnero J.E.
        • et al.
        Materno-fetal transfer of docosahexaenoic acid is impaired by gestational diabetes mellitus.
        Am. J. Physiol. Endocrinol. Metab. 2013; 305: E826-E833
        • Ying H.
        • Wang D.F.
        Effects of dietary fat on onset of gestational diabetes mellitus.
        Chin. J. Obstet. Gynecol. 2006; 41 (In Chinese): 729-731
        • Zhang C.
        • Liu S.
        • Solomon C.J.
        • Hu F.B.
        Dietary fiber intake, dietary glycemic load, and the risk for gestational diabetes mellitus.
        Diabetes Care. 2006; 29: 2223-2230
        • Saldana T.M.
        • Siega-Riz A.M.
        • Adair L.S.
        Effect of macronutrient intake on the development of glucose intolerance during pregnancy.
        Am. J. Clin. Nutr. 2004; 79: 479-486
        • Wang Y.
        • Storlien L.H.
        • Jenkins A.B.
        • et al.
        Dietary variables and glucose tolerance in pregnancy.
        Diabetes Care. 2000; 23: 460-464
        • Zhao J.P.
        • Levy E.
        • Fraser W.D.
        • et al.
        Circulating docosahexaenoic acid levels are associated with fetal insulin sensitivity.
        PLoS. One. 2014; 9: e85054
        • American College of Obstetricians and Gynecologists (ACOG)
        Report of the American College of Obstetricians and Gynecologists’ Task Force on hypertension in pregnancy.
        Obstet. Gynecol. 2013; 122: 1122-1131
        • Brown M.C.
        • Best K.E.
        • Pearce M.S.
        • Waugh J.
        • Robson S.C.
        • Bell R.
        Cardiovascular disease risk in women with pre-eclampsia: systematic review and meta-analysis.
        Eur. J. Epidemiol. 2013; 28: 1-19
        • Bell M.J.
        A historical overview of preeclampsia-eclampsia.
        J. Obstet. Gynecol. Neonatal Nurs. 2010; 39: 510-518
        • Hakim J.
        • Senterman M.K.
        • Hakim A.M.
        Preeclampsia is a biomarker for vascular disease in both mother and child: the need for a medical alert system.
        Int. J. Pediatr. 2013; 2013: 953150
        • Mutter W.P.
        • Karumanchi S.A.
        Molecular mechanisms of preeclampsia.
        Microvasc. Res. 2008; 75: 1-8
        • Wu C.S.
        • Nohr E.A.
        • Bech B.H.
        • Vestergaard M.
        • Catov J.M.
        • Olsen J.
        Health of children born to mothers who had preeclampsia: a population-based cohort study.
        Am. J. Obstet. Gynecol. 2009; 201: 269.e1-269.e10
        • Craici I.
        • Wagner S.
        • Garovic V.D.
        Preeclampsia and future cardiovascular risk: formal risk factor or failed stress test?.
        Ther. Adv. Cardiovasc. Dis. 2008; 2: 249-259
        • Laresgoiti-Servitje E.
        • Gómez-López N.
        • Olson D.M.
        An immunological insight into the origins of pre-eclampsia.
        Hum. Reprod. Update. 2010; 16: 510-524
        • Grill S.
        • Rusterholz C.
        • Zanetti-Dällenbach R.
        • et al.
        Potential markers of preeclampsia--a review.
        Reprod. Biol. Endocrinol. 2009; 7: 70
        • Myatt L.
        • Webster R.P.
        Vascular biology of preeclampsia.
        J. Thromb. Haemost. 2009; 7: 375-384
        • Walsh S.W.
        • Vaughan J.E.
        • Wang Y.
        • Roberts II, L.J.
        Placental isoprostane is significantly increased in preeclampsia.
        FASEB. J. 2000; 14: 1289-1296
        • Carstairs V.
        • Morris R.
        Deprivation and mortality: an alternative to social class?.
        Community Med. 1989; 11: 210-219
        • Mackay V.A.
        • Huda S.S.
        • Stewart F.M.
        • et al.
        Preeclampsia is associated with compromised maternal synthesis of long-chain polyunsaturated fatty acids, leading to offspring deficiency.
        Hypertension. 2012; 60: 1078-1085
        • Kulkarni A.V.
        • Mehendale S.S.
        • Yadav H.R.
        • Joshi S.R.
        Reduced placental docosahexaenoic acid levels associated with increased levels of sFlt-1 in preeclampsia.
        Prostaglandins Leukot. Essent. Fat. Acids. 2011; 84: 51-55
        • Dangat K.D.
        • Mehendale S.S.
        • Yadav H.R.
        • et al.
        Long chain polyunsaturated fatty acid composition of breast milk in pre-eclamptic mothers.
        Neonatology. 2010; 97: 190-194
        • Bakheit K.H.
        • Ghebremeskel K.
        • Pol K.
        • Elbashir M.I.
        • Adam I.
        Erythrocyte omega-3 and omega-6 fatty acids profile in Sudanese women with pre-eclampsia.
        J. Obstet. Gynaecol. 2010; 30: 151-154
        • Mehendale S.
        • Kilari A.
        • Dangat K.
        • Taralekar V.
        • Mahadik S.
        • Joshi S.
        Fatty acids, antioxidants, and oxidative stress in pre-eclampsia.
        Int. J. Gynaecol. Obstet. 2008; 100: 234-238
        • Mahomed K.
        • Williams M.A.
        • King I.B.
        • Mudzamiri S.
        • Woelk G.B.
        Erythrocyte omega-3, omega-6 and trans fatty acids in relation to risk of preeclampsia among women delivering at Harare Maternity Hospital, Zimbabwe.
        Physiol. Res. 2007; 56: 37-50
        • Qiu C.
        • Sanchez S.E.
        • Larrabure G.
        • David R.
        • Bralley J.A.
        • Williams M.A.
        Erythrocyte omega-3 and omega-6 polyunsaturated fatty acids and preeclampsia risk in Peruvian women.
        Arch. Gynecol. Obstet. 2006; 274: 97-103
        • Wang Y.
        • Walsh S.W.
        • Kay H.H.
        Placental tissue levels of nonesterified polyunsaturated fatty acids in normal and preeclamptic pregnancies.
        Hypertens. Pregnancy. 2005; 24: 235-245
        • Williams M.A.
        • Zingheim R.W.
        • King I.B.
        • Zebelman A.M.
        Omega-3 fatty acids in maternal erythrocytes and risk of preeclampsia.
        Epidemiology. 1995; 6: 232-237
        • Al M.D.
        • van Houwelingen A.C.
        • Badart-Smook A.
        • Hasaart T.H.
        • Roumen F.J.
        • Hornstra G.
        The essential fatty acid status of mother and child in pregnancy-induced hypertension: a prospective longitudinal study.
        Am. J. Obstet. Gynecol. 1995; 172: 1605-1614
        • Wadhwani N.
        • Patil V.
        • Pisal H.
        • et al.
        Altered maternal proportions of long chain polyunsaturated fatty acids and their transport leads to disturbed fetal stores in preeclampsia.
        Prostaglandins Leukot. Essent. Fat. Acids. 2014; 91: 21-30
        • Wadhwani N.
        • Narang A.
        • Mehendale S.
        • Wagh G.
        • Gupte S.
        • Joshi S.
        Reduced maternal erythrocyte long chain polyunsaturated fatty acids exist in early pregnancy in preeclampsia.
        Lipids. 2016; 51: 85-94
        • Simopoulos A.P.
        Omega-3 fatty acids in health and disease and in growth and development.
        Am. J. Clin. Nutr. 1991; 54: 438-463
        • Imhoff-Kunsch B.
        • Briggs V.
        • Goldenberg T.
        • Ramakrishnan U.
        Effect of n-3 long-chain polyunsaturated fatty acid intake during pregnancy on maternal, infant, and child health outcomes: a systematic review.
        Paediatr. Perinat. Epidemiol. 2012; 26: 91-107
        • Velzing-Aarts F.V.
        • van der Klis F.R.
        • van der Dijs F.P.
        • Muskiet F.A.
        Umbilical vessels of preeclamptic women have low contents of both n-3 and n-6 long-chain polyunsaturated fatty acids.
        Am. J. Clin. Nutr. 1999; 69: 293-298
        • Roberts J.M.
        • Redman C.W.
        Pre-eclampsia: more than pregnancy induced hypertension.
        Lancet. 1993; 341: 1447-1451
        • Cetin I.
        • Koletzko B.
        Long-chain omega-3 fatty acid supply in pregnancy and lactation.
        Curr. Opin. Clin. Nutr. Metab. Care. 2008; 11: 297-302
        • Mozurkewich E.L.
        • Klemens C.
        Omega-3 fatty acids and pregnancy: current implications for practice.
        Curr. Opin. Obstet. Gynecol. 2012; 24: 72-77
        • Jones M.L.
        • Mark P.J.
        • Waddell B.J.
        Maternal dietary omega-3 fatty acids and placental function.
        Reproduction. 2014; 147: R143-R152
        • Zhou S.J.
        • Yelland L.
        • McPhee A.J.
        • Quinlivan J.
        • Gibson R.A.
        • Makrides M.
        Fish-oil supplementation in pregnancy does not reduce the risk of gestational diabetes or preeclampsia.
        Am. J. Clin. Nutr. 2012; 95: 1378-1384
        • De Giuseppe R.
        • Roggi C.
        • Cena H.
        n-3 LC-PUFA supplementation: effects on infant and maternal outcomes.
        Eur. J. Nutr. 2014; 53: 1147-1154
        • Alvino G.
        • Cozzi V.
        • Radaelli T.
        • Ortega H.
        • Herrera E.
        • Cetin I.
        Maternal and fetal fatty acid profile in normal and intrauterine growth restriction pregnancies with and without preeclampsia.
        Pediatr. Res. 2008; 64: 615-620
        • Ortega-Senovilla H.
        • Alvino G.
        • Taricco E.
        • Cetin I.
        • Herrera E.
        Enhanced circulating retinol and non-esterified fatty acids in pregnancies complicated with intrauterine growth restriction.
        Clin. Sci. (Lond.). 2009; 118: 351-358
        • Cetin I.
        • Alvino G.
        Intrauterine growth restriction: implications for placental metabolism and transport. A review.
        Placenta. 2009; 30: S77-S82
        • De Rooij S.R.
        • Painter R.C.
        • Holleman F.
        • Bossuyt P.M.
        • Roseboom T.J.
        The metabolic syndrome in adults prenatally exposed to the Dutch famine.
        Am. J. Clin. Nutr. 2007; 86: 1219-1224
        • Dekker G.A.
        • Sibai B.M.
        Etiology and pathogenesis of preeclampsia: current concepts.
        Am. J. Obstet. Gynecol. 1998; 179: 1359-1375
        • Mayhew T.M.
        • Wijesekara J.
        • Baker P.N.
        • Ong S.S.
        Morphometric evidence that villous development and fetoplacental angiogenesis are compromised by intrauterine growth restriction but not by pre-eclampsia.
        Placenta. 2004; 25: 829-833
        • Cetin I.
        • Antonazzo P.
        The role of the placenta in intrauterine growth restriction (IUGR).
        Z. Geburtshilfe Neonatol. 2009; 213: 84-88
        • Cruz-Lemini M.
        • Crispi F.
        • Van Mieghem T.
        • et al.
        Risk of perinatal death in early-onset intrauterine growth restriction according to gestational age and cardiovascular Doppler indices: a multicenter study.
        Fetal Diagn. Ther. 2012; 32: 116-122
        • Kingdom J.
        • Huppertz B.
        • Seaward G.
        • Kaufmann P.
        Development of the placental villous tree and its consequences for fetal growth.
        Eur. J. Obstet. Gynecol. Reprod. Biol. 2000; 92: 35-43
        • Barker D.J.
        Adult consequences of fetal growth restriction.
        Clin. Obstet. Gynecol. 2006; 49: 270-283
        • Crispi F.
        • Bijnens B.
        • Figueras F.
        • et al.
        Fetal growth restriction results in remodeled and less efficient hearts in children.
        Circulation. 2010; 121: 2427-2436
        • Marconi A.M.
        • Cetin I.
        • Davoli E.
        • et al.
        An evaluation of fetal glucogenesis in intrauterine growth-retarded pregnancies.
        Metabolism. 1993; 42: 860-864
        • Cetin I.
        • Giovannini N.
        • Alvino G.
        • et al.
        Intrauterine growth restriction is associated with changes in polyunsaturated fatty acid fetal-maternal relationships.
        Pediatr. Res. 2002; 52: 750-755
        • Bobiński R.
        • Mikulska M.
        The ins and outs of maternal-fetal fatty acid metabolism.
        Acta Biochim. Pol. 2015; 62: 499-507
        • Magnusson A.L.
        • Waterman I.J.
        • Wennergren M.
        • Jansson T.
        • Powell T.L.
        Triglyceride hydrolase activities and expression of fatty acid binding proteins in the human placenta in pregnancies complicated by intrauterine growth restriction and diabetes.
        J. Clin. Endocrinol. Metab. 2004; 89: 4607-4614
        • Tabano S.
        • Alvino G.
        • Antonazzo P.
        • Grati F.R.
        • Miozzo M.
        • Cetin I.
        Placental LPL gene expression is increased in severe intrauterine growth-restricted pregnancies.
        Pediatr. Res. 2006; 59: 250-253
        • Wadsack C.
        • Tabano S.
        • Maier A.
        • et al.
        Intrauterine growth restriction (IUGR) is associated with alterations in placental lipoprotein receptors and maternal lipoprotein composition.
        Am. J. Physiol. Endocrinol. Metab. 2007; 292: 476-484
        • Halldorsson T.I.
        • Meltzer H.M.
        • Thorsdottir I.
        • Knudsen V.
        • Olsen S.F.
        Is high consumption of fatty fish during pregnancy a risk factor for fetal growth retardation? A study of 44,824 Danish pregnant women.
        Am. J. Epidemiol. 2007; 166: 687-696
        • Ramakrishnan U.
        • Stein A.D.
        • Parra-Cabrera S.
        • et al.
        Effects of docosahexaenoic acid supplementation during pregnancy on gestational age and size at birth: randomized, double-blind, placebo-controlled trial in Mexico.
        Food Nutr. Bull. 2010; 31: S108-S116
        • Gademan M.G.
        • Vermeulen M.
        • Oostvogels A.J.
        • et al.
        Maternal prepregnancy BMI and lipid profile during early pregnancy are independently associated with offspring's body composition at age 5–6 years: the ABCD study.
        PLoS One. 2014; 9: e94594
        • Donahue S.M.
        • Rifas-Shiman S.L.
        • Gold D.R.
        • Jouni Z.E.
        • Gillman M.W.
        • Oken E.
        Prenatal fatty acid status and child adiposity at age 3 y: results from a US pregnancy cohort.
        Am. J. Clin. Nutr. 2011; 93: 780-788
        • Moon R.J.
        • Harvey N.C.
        • Robinson S.M.
        • et al.
        Maternal plasma polyunsaturated fatty acid status in late pregnancy is associated with offspring body composition in childhood.
        J. Clin. Endocrinol. Metab. 2013; 98: 299-307
        • de Vries P.S.
        • Gielen M.
        • Rizopoulos D.
        • et al.
        Association between polyunsaturated fatty acid concentrations in maternal plasma phospholipids during pregnancy and offspring adiposity at age 7: the MEFAB cohort.
        Prostaglandins Leukot. Essent. Fat. Acids. 2014; 91: 81-85
        • Kabaran S.
        • Besler H.T.
        Do fatty acids affect fetal programming?.
        J. Health Popul. Nutr. 2015; 33: 14
        • Makrides M.
        • Collins C.T.
        • Gibson R.A.
        Impact of fatty acid status on growth and neurobehavioural development in humans.
        Matern. Child. Nutr. 2011; 7: 80-88
        • Innis S.M.
        Essential fatty acid transfer and fetal development.
        Placenta. 2005; 26: 70-75
        • Simopoulos A.P.
        An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity.
        Nutrients. 2016; 8: 128
        • Warensjo E.
        • Orhval M.
        • Vessby B.
        • B
        Fatty acid composition and estimated desaturase activities are associated with obesity and lifestyle variables in men and women.
        Nutr. Metab. Cardiovasc. Dis. 2006; 16: 128-136
        • van Goor S.A.
        • Dijck-Brouwer D.A.
        • Doornbos B.
        • et al.
        Supplementation of DHA but not DHA with arachidonic acid during pregnancy and lactation influences general movement quality in 12-week-old term infants.
        Br. J. Nutr. 2010; 103: 235-242
        • de Groot R.H.
        • Hornstra G.
        • van Houwelingen A.C.
        • Roumen F.
        Effect of alpha-linolenic acid supplementation during pregnancy on maternal and neonatal polyunsaturated fatty acid status and pregnancy outcome.
        Am. J. Clin. Nutr. 2004; 79: 251-260
        • Muskiet F.A.
        • van Goor S.A.
        • Kuipers R.S.
        • et al.
        Long-chain polyunsaturated fatty acids in maternal and infant nutrition.
        Prostaglandins Leukot. Essent. Fat. Acids. 2006; 75: 135-144
        • Koletzko B.
        • Boey C.C.
        • Campoy C.
        • et al.
        Current information and Asian perspectives on long-chain polyunsaturated fatty acids in pregnancy, lactation, and infancy: systematic review and practice recommendations from an early nutrition academy workshop.
        Ann. Nutr. Metab. 2014; 65: 49-80