Advertisement

Maternal dietary deficiency of n-3 fatty acids affects metabolic and epigenetic phenotypes of the developing fetus

      Highlights

      • Inappropriate intakes of n-6 and n-3 fatty acids in pregnancy carry risks for the fetal development and diseases in later life.
      • In addition to deficit intakes of several dietary factors by mothers in India, n-3 deficiency seems to be the most prominent.
      • The n-3 deficiency affects fetal growing tissues globally such as the brain, motor nerve, muscle, eye, adiposity etc.
      • Maternal deficiency of n-3 fatty acids may also affect placental angiogenesis and thereby its structure and function.
      • Maternal intake of n-3 fatty acids must be followed with ISSFAL guidelines to improve maternal health and fetal development.

      Abstract

      Polyunsaturated fatty acids (PUFAs) play multiple physiological roles. They regulate the structure and function of cell membranes and cell growth and proliferation, and apoptosis. In addition, PUFAs are involved in cellular signaling, gene expression and serve as precursors to second messengers such as eicosanoids, docosanoids etc. and regulate several physiological processes including placentation, inflammation, immunity, angiogenesis, platelet function, synaptic plasticity, neurogenesis, bone formation, energy homeostasis, pain sensitivity, stress, and cognitive functions. Linoleic acid, 18:2n-6 (LA) and alpha-linolenic acid, 18:3n-3 (ALA) are the two essential fatty acids obtained from the diets and subsequently their long-chain polyunsaturated fatty acids (LCPUFAs) are accumulated in the body. The maternal plasma LCPUFAs especially accumulated in larger amounts in the brain during the third trimester of pregnancy via the placenta and postnatally from mother's breast milk. Various studies, including ours, suggest PUFA's important role in placentation, as well as in growth and development of the offspring. However, intakes of maternal n-3 PUFAs during pregnancy and lactation are much lower in India compared with the Western population. In India, n-3 fatty acid status is further reduced by higher intake of n-6 PUFA rich oils and trans fats. More data on the impacts of long term maternal n-3 PUFA deficiency on placental structure and function, gene expression, epigenetic changes and resultant cognitive function of fetus & infants are emerging. This review summarizes the impacts of n-3 PUFA deficiency in utero on fetal growth and development, adiposity, energy metabolism, musculoskeletal development, and epigenetic changes in feto-placental axis from the recently available pre-clinical and clinical data.

      Keywords

      Abbreviations:

      FA (Fatty acid), SFA (Saturated fatty acids), MUFA (monounsaturated fatty acids), PUFA (polyunsaturated fatty acids), LCPUFA (Long-chain polyunsaturated fatty acids), LCFAs (Long-chain fatty acids), EFA (Essential fatty acids), OA (Oleic acid, 18:1 (n-9)), AA (Arachidonic acid, 20:4 (n-6)), EPA (Eicosapentenoic acid, 20:5 (n-3)), DHA (Docosahexaenoic acid, 22:6 (n-3)), LA (Linoleic acid), ALA (Alpha-linolenic acid), TFA (Trans fatty acid;FFA, Free fatty acid), WAT (white adipose tissue), BAT (Brown adipose tissue)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cunnane S.C.
        • Crawford M.A.
        Survival of the fattest: fat babies were the key to evolution of the large human brain.
        Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 2003; 136: 17-26
        • Pontzer H.
        • Brown M.H.
        • Raichlen D.A.
        • Dunsworth H.
        • Hare B.
        • Walker K.
        • Luke A.
        • Dugas L.R.
        • Durazo-Arvizu R.
        • Schoeller D.
        • Plange-Rhule J.
        • Bovet P.
        • Forrester T.E.
        • Lambert E.V.
        • Thompson M.E.
        • Shumaker R.W.
        • Ross S.R.
        Metabolic acceleration and the evolution of human brain size and life history.
        Nature. 2016; 533: 390-392
        • Lauritzen L.
        • Carlson S.E.
        Maternal fatty acid status during pregnancy and lactation and relation to newborn and infant status.
        Matern. Child Nutr. 2011; 7: 41-58
      1. A.A. Spector, Essentiality of fatty acids, Lipids, 34Suppl (1999)S1–3.

        • Innis S.M.
        Metabolic programming of long-term outcomes due to fatty acid nutrition in early life.
        Matern. Child Nutr. 2011; 7: 112-123
        • Hoppenbrouwers T.
        • Cvejić Hogervorst J.H.
        • Garssen J.
        • Wichers H.J.
        • Willemsen L.E.M.
        Long Chain Polyunsaturated Fatty Acids (LCPUFAs) in the prevention of food allergy.
        Front. Immunol. 2019; 10 (1118)
        • Clarke S.D.
        Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to improve the metabolic syndrome.
        J. Nutr. 2001; 131: 1129-1132
        • Crawford M.A.
        • Doyle W.
        • Drury P.
        • Lennon A.
        • Costeloe K.
        • Leighfield M.
        n-6 and n-3 fatty acids during early human development.
        J. Intern. Med. Suppl. 1989; 731: 159-169
        • Harris W.S.
        Achieving optimal n-3 fatty acid status: the vegetarian's challenge . . . or not.
        Am. J. Clin. Nutr. 2014; 100: 449S-452S
        • Harris W.S.
        The Omega-6:omega-3 ratio: a critical appraisal and possible successor.
        Prostaglandins Leukot Essent Fatty Acids. 2018; 132: 34-40
        • Simopoulos A.P.
        The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases.
        Exp. Biol. Med. 2008; 233: 674-688
        • Meyer B.J.
        Are we consuming enough long chain omega-3 polyunsaturated fatty acids for optimal health?.
        Prostaglandins Leukot Essent Fatty Acids. 2011; 85: 275-280
        • Simopoulos A.P.
        An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity.
        Nutrients. 2016; 8: 128
        • Helland I.B.
        • Smith L.
        • Saarem K.
        • Saugstad O.D.
        • Drevon C.A.
        Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children's IQ at 4 years of age.
        Pediatrics. 2003; 111: e39-e44
        • Enke U.
        • Seyfarth L.
        • Schleussner E.
        • Markert U.R.
        Impact of PUFA on early immune and fetal development.
        Br. J. Nutr. 2008; 100: 1158-1168
        • Greenberg J.A.
        • Bell S.J.
        • Ausdal W.V.
        Omega-3 fatty acid supplementation during pregnancy.
        Rev. Obstet. Gynecol. 2008; 1: 162-169
        • Helland I.B.
        • Smith L.
        • Blomen B.
        • Saarem K.
        • Saugstad O.D.
        • Drevon C.A.
        Effect of supplementing pregnant and lactating mothers with n-3 very-long-chain fatty acids on children's IQ and body mass index at 7 years of age.
        Pediatrics. 2008; 122: e472-e479
        • Koletzko B.
        • Lien E.
        • Agostoni C.
        • Bohles H.
        • Campoy C.
        • Cetin I.
        • Decsi T.
        • Dudenhausen J.W.
        • Dupont C.
        • Forsyth S.
        • Hoesli I.
        • Holzgreve W.
        • Lapillonne A.
        • Putet G.
        • Secher N.J.
        • Symonds M.
        • Szajewska H.
        • Willatts P.
        • Uauy R.
        • G. World Association of Perinatal Medicine Dietary Guidelines Working
        The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations.
        J. Perinat. Med. 2008; 36: 5-14
        • Larqué E.
        • Gil-Sánchez A.
        • Prieto-Sánchez M.T.
        • Koletzko B.
        Omega 3 fatty acids, gestation and pregnancy outcomes.
        Br. J. Nutr. 2012; 107: S77-S84
        • Leventakou V.
        • Roumeliotaki T.
        • Martinez D.
        • Barros H.
        • Brantsaeter A.-.L.
        • Casas M.
        • Charles M.-.A.
        • Cordier S.
        • Eggesbø M.
        • van Eijsden M.
        • Forastiere F.
        • Gehring U.
        • Govarts E.
        • Halldórsson T.I.
        • Hanke W.
        • Haugen M.
        • Heppe D.H.M.
        • Heude B.
        • Inskip H.M.
        • Jaddoe V.W.V.
        • Jansen M.
        • Kelleher C.
        • Meltzer H.M.
        • Merletti F.
        • Moltó-Puigmartí C.
        • Mommers M.
        • Murcia M.
        • Oliveira A.
        • Olsen S.F.
        • Pele F.
        • Polanska K.
        • Porta D.
        • Richiardi L.
        • Robinson S.M.
        • Stigum H.
        • Strøm M.
        • Sunyer J.
        • Thijs C.
        • Viljoen K.
        • Vrijkotte T.G.M.
        • Wijga A.H.
        • Kogevinas M.
        • Vrijheid M.
        • Chatzi L.
        Fish intake during pregnancy, fetal growth, and gestational length in 19 European birth cohort studies.
        Am. J. Clin. Nutr. 2014; 99: 506-516
        • Duttaroy A.K.
        Docosahexaenoic acid supports feto-placental growth and protects cardiovascular and cognitive function: a mini review.
        Eur. J. Lipid Sci. Technol. 2016; 118: 1439-1449
        • Lauritzen L.
        • Brambilla P.
        • Mazzocchi A.
        • Harsløf L.B.S.
        • Ciappolino V.
        • Agostoni C.
        DHA Effects in Brain Development and Function.
        Nutrients. 2016; 8: 6
        • Tobin K.A.
        • Johnsen G.M.
        • Staff A.C.
        • Duttaroy A.K.
        Long-chain polyunsaturated fatty acid transport across human placental choriocarcinoma (BeWo) cells.
        Placenta. 2009; 30: 41-47
        • Brass E.
        • Hanson E.
        • O'Tierney-Ginn P.F.
        Placental oleic acid uptake is lower in male offspring of obese women.
        Placenta. 2013; 34: 503-509
        • Carvajal J.A.
        Docosahexaenoic acid supplementation early in pregnancy may prevent deep placentation disorders.
        Biomed. Res. Int. 2014; 2014526895
        • Calabuig-Navarro V.
        • Puchowicz M.
        • Glazebrook P.
        • Haghiac M.
        • Minium J.
        • Catalano P.
        • Hauguel deMouzon S.
        • O'Tierney-Ginn P.
        Effect of omega-3 supplementation on placental lipid metabolism in overweight and obese women.
        Am. J. Clin. Nutr. 2016; 103: 1064-1072
        • Novak E.M.
        • King D.J.
        • Innis S.M.
        Low linoleic acid may facilitate Delta6 desaturase activity and docosahexaenoic acid accretion in human fetal development.
        Prostaglandins Leukot Essent Fatty Acids. 2012; 86: 93-98
        • N. Efsa Panel on Dietetic Products, Allergies
        Scientific opinion on the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA).
        EFSA J. 2012; 10: 2815
        • Koletzko B.
        • Cetin I.
        • Brenna J.T.
        Dietary fat intakes for pregnant and lactating women.
        Br. J. Nutr. 2007; 98: 873-877
      2. FAO, Fats and Fatty Acids in Human Nutrition: Report of an Expert Consultation, (2010) 166.

      3. I. National Institute of Nutrition, National Nutrition Monitoring Bureau (NNMB). Report for the year 2012. Technical Report Series, 2012.

        • Mani I.
        • Kurpad A.V.
        Fats & fatty acids in Indian diets: time for serious introspection.
        Indian J. Med. Res. 2016; 144: 507-514
        • Dwarkanath P.
        • Muthayya S.
        • Thomas T.
        • Vaz M.
        • Parikh P.
        • Mehra R.
        • Kurpad A.V.
        Polyunsaturated fatty acid consumption and concentration among South Indian women during pregnancy.
        Asia Pac. J. Clin. Nutr. 2009; 18: 389-394
        • Misra A.
        • Sharma R.
        • Gulati S.
        • Joshi S.R.
        • Sharma V.
        • Ghafoorunissa
        • Ibrahim A.
        • Joshi S.
        • Laxmaiah A.
        • Kurpad A.
        • Raj R.K.
        • Mohan V.
        • Chandalia H.
        • Krishnaswamy K.
        • Boindala S.
        • Gopalan S.
        • Bhattiprolu S.K.
        • Modi S.
        • Vikram N.K.
        • Makkar B.M.
        • Mathur M.
        • Dey S.
        • Vasudevan S.
        • Gupta S.P.
        • Puri S.
        • Joshi P.
        • Khanna K.
        • Mathur P.
        • Krishnaswamy S.
        • Madan J.
        • Karmarkar M.
        • Seth V.
        • Passi S.J.
        • Chadha D.
        • Bhardwaj S.
        • G. National Dietary Guidelines Consensus
        Consensus dietary guidelines for healthy living and prevention of obesity, the metabolic syndrome, diabetes, and related disorders in Asian Indians.
        Diabetes Technol. Ther. 2011; 13: 683-694
        • Wanders A.J.
        • Zock P.L.
        • Brouwer I.A.
        Trans fat intake and its dietary sources in general populations worldwide: a systematic review.
        Nutrients. 2017; 9: 840
        • Pimentel G.D.
        • Lira F.S.
        • Rosa J.C.
        • Oliveira J.L.
        • Losinskas-Hachul A.C.
        • Souza G.I.
        • das Gracas T.d.C.M.
        • Santos R.V.
        • de Mello M.T.
        • Tufik S.
        • Seelaender M.
        • Oyama L.M.
        • Oller do Nascimento C.M.
        • Watanabe R.H.
        • Ribeiro E.B.
        • Pisani L.P.
        Intake of trans fatty acids during gestation and lactation leads to hypothalamic inflammation via TLR4/NFkappaBp65 signaling in adult offspring.
        J. Nutr. Biochem. 2012; 23: 265-271
        • Innis S.M.
        Trans fatty intakes during pregnancy, infancy and early childhood.
        Atheroscler. Suppl. 2006; 7: 17-20
        • Cohen J.F.
        • Rifas-Shiman S.L.
        • Rimm E.B.
        • Oken E.
        • Gillman M.W.
        Maternal trans fatty acid intake and fetal growth.
        Am. J. Clin. Nutr. 2011; 94: 1241-1247
        • Mueller A.
        • Thijs C.
        • Rist L.
        • Simoes-Wust A.P.
        • Huber M.
        • Steinhart H.
        Trans fatty acids in human milk are an indicator of different maternal dietary sources containing trans fatty acids.
        Lipids. 2010; 45: 245-251
        • Swaminathan S.
        • Hemalatha R.
        • Pandey A.
        • Kassebaum N.J.
        • Laxmaiah A.
        • Longvah T.
        • Lodha R.
        • Ramji S.
        • Kumar G.A.
        • Afshin A.
        • Gupta S.S.
        • Kar A.
        • Khera A.K.
        • Mathai M.
        • Awasthi S.
        • Rasaily R.
        • Varghese C.M.
        • Millear A.I.
        • Manguerra H.
        • Gardner W.M.
        • Sorenson R.
        • Sankar M.J.
        • Purwar M.
        • Furtado M.
        • Bansal P.G.
        • Barber R.
        • Chakma J.K.
        • Chalek J.
        • Dwivedi S.
        • Fullman N.
        • Ginnela B.N.
        • Glenn S.D.
        • Godwin W.
        • Gonmei Z.
        • Gupta R.
        • Jerath S.G.
        • Kant R.
        • Krish V.
        • Kumar R.H.
        • Ladusingh L.
        • Meshram I.I.
        • Mutreja P.
        • Nagalla B.
        • Nimmathota A.
        • Odell C.M.
        • Olsen H.E.
        • Pati A.
        • Pickering B.
        • Radhakrishna K.V.
        • Raina N.
        • Rankin Z.
        • Saraf D.
        • Sharma R.S.
        • Sinha A.
        • Varanasi B.
        • Shekhar C.
        • Bekedam H.J.
        • Reddy K.S.
        • Lim S.S.
        • Hay S.I.
        • Dandona R.
        • Murray C.J.L.
        • Toteja G.S.
        • Dandona L.
        The Burden of Child and Maternal Malnutrition and Trends in Its Indicators in the States of India: the Global Burden of Disease Study 1990–2017.
        The Lancet Child & Adolescent Health, 2019
        • Duttaroy A.K.
        • Basak S.
        Human Placental Trophoblasts: Impacts of Maternal Nutrition. 456. CRC Press, Taylor & Francis, Boca Raton2015: 35 (B/W Illustrations)
        • Meher A.P.
        • Wadhwani N.
        • Randhir K.
        • Mehendale S.
        • Wagh G.
        • Joshi S.R.
        Placental DHA and mRNA levels of PPARgamma and LXRalpha and their relationship to birth weight.
        J. Clin. Lipidol. 2016; 10: 767-774
        • Rani A.
        • Chavan-Gautam P.
        • Mehendale S.
        • Wagh G.
        • Joshi S.
        Differential regional fatty acid distribution in normotensive and preeclampsia placenta.
        BBA Clin. 2015; 4: 21-26
        • Wadhwani N.
        • Patil V.
        • Pisal H.
        • Joshi A.
        • Mehendale S.
        • Gupte S.
        • Wagh G.
        • Joshi S.
        Altered maternal proportions of long chain polyunsaturated fatty acids and their transport leads to disturbed fetal stores in preeclampsia.
        Prostaglandins Leukot Essent Fatty Acids. 2014; 91: 21-30
        • Winder N.R.
        • Krishnaveni G.V.
        • Veena S.R.
        • Hill J.C.
        • Karat C.L.
        • Thornburg K.L.
        • Fall C.H.
        • Barker D.J.
        Mother's lifetime nutrition and the size, shape and efficiency of the placenta.
        Placenta. 2011; 32: 806-810
        • Dhobale M.V.
        • Wadhwani N.
        • Mehendale S.S.
        • Pisal H.R.
        • Joshi S.R.
        Reduced levels of placental long chain polyunsaturated fatty acids in preterm deliveries.
        Prostaglandins Leukot. Essent. Fatty Acids. 2011; 85: 149-153
        • Yajnik C.S.
        • Fall C.H.
        • Coyaji K.J.
        • Hirve S.S.
        • Rao S.
        • Barker D.J.
        • Joglekar C.
        • Kellingray S.
        Neonatal anthropometry: the thin-fat Indian baby. The Pune maternal nutrition study.
        Int. J. Obes. Relat. Metab. Disord. 2003; 27: 173-180
        • Jaya D.S.
        • Kumar N.S.
        • Bai L.S.
        Anthropometric indices, cord length and placental weight in newborns.
        Indian Pediatr. 1995; 32: 1183-1188
        • Innis S.M.
        • Friesen R.W.
        Essential n-3 fatty acids in pregnant women and early visual acuity maturation in term infants.
        Am. J. Clin. Nutr. 2008; 87: 548-557
        • Duttaroy A.K.
        Transport of fatty acids across the human placenta: a review.
        Prog. Lipid Res. 2009; 48: 52-61
        • Koletzko B.
        • Larque E.
        • Demmelmair H.
        Placental transfer of long-chain polyunsaturated fatty acids (LC-PUFA).
        J. Perinat. Med. 2007; 35 (s5–11)
        • Jones M.L.
        • Mark P.J.
        • Waddell B.J.
        Maternal dietary omega-3 fatty acids and placental function.
        Reproduction. 2014; 147: R143-R152
        • Martinez-Zaldivar C.
        • Diaz-Piedra C.
        • Gil A.
        • Haile G.
        • Gyorei E.
        • Molloy A.M.
        • Decsi T.
        • Koletzko B.
        • Campoy C.
        • Wietrak E.
        • Kaminski K.
        • Leszczynska-Gorzelak B.
        • Oleszczuk J.
        Effect of docosahexaenoic acid on apoptosis and proliferation in the placenta: preliminary report.
        Am. J. Clin. Nutr. 2015; 2015482875
        • Johnsen G.M.
        • Basak S.
        • Weedon-Fekjaer M.S.
        • Staff A.C.
        • Duttaroy A.K.
        Docosahexaenoic acid stimulates tube formation in first trimester trophoblast cells, HTR8/SVneo.
        Placenta. 2011; 32: 626-632
        • Akerele O.A.
        • Cheema S.K.
        A diet enriched in longer chain omega-3 fatty acids reduced placental inflammatory cytokines and improved fetal sustainability of C57BL/6 mice.
        Prostaglandins Leukot Essent Fatty Acids. 2018; 137: 43-51
        • Reyes-Hernández C.G.
        • Ramiro-Cortijo D.
        • Rodríguez-Rodríguez P.
        • Giambelluca S.
        • Simonato M.
        • González M.D.C.
        • López de Pablo A.L.
        • López-Giménez M.D.R.
        • Cogo P.
        • Sáenz de Pipaón M.
        • Carnielli V.P.
        • Arribas S.M.
        Effects of arachidonic and docosohexahenoic acid supplementation during gestation in rats. implication of placental oxidative stress.
        Int. J. Mol. Sci. 2018; 19: 3863
        • Basak S.
        • Das M.K.
        • Duttaroy A.K.
        Fatty acid-induced angiogenesis in first trimester placental trophoblast cells: possible roles of cellular fatty acid-binding proteins.
        Life Sci. 2013; 93: 755-762
        • Basak S.
        • Duttaroy A.K.
        Effects of fatty acids on angiogenic activity in the placental extravillious trophoblast cells.
        Prostaglandins Leukot Essent Fatty Acids. 2013; 88: 155-162
        • Highet A.R.
        • Buckberry S.
        • Mayne B.T.
        • Khoda S.M.
        • Bianco-Miotto T.
        • Roberts C.T.
        First trimester trophoblasts forming endothelial-like tubes in vitro emulate a ‘blood vessel development’ gene expression profile.
        Gene Expression Patterns. 2016; 21: 103-110
        • Devarshi P.P.
        • Grant R.W.
        • Ikonte C.J.
        • Hazels Mitmesser S.
        Maternal omega-3 nutrition, placental transfer and fetal brain development in gestational diabetes and preeclampsia.
        Nutrients. 2019; 11: 1-12
        • Kulkarni A.V.
        • Mehendale S.S.
        • Yadav H.R.
        • Joshi S.R.
        Reduced placental docosahexaenoic acid levels associated with increased levels of sFlt-1 in preeclampsia.
        Prostaglandins Leukot. Essent. Fatty Acids. 2011; 84: 51-55
        • Muthayya S.
        • Dwarkanath P.
        • Thomas T.
        • Ramprakash S.
        • Mehra R.
        • Mhaskar A.
        • Mhaskar R.
        • Thomas A.
        • Bhat S.
        • Vaz M.
        • Kurpad A.V.
        The effect of fish and omega-3 LCPUFA intake on low birth weight in Indian pregnant women.
        Eur. J. Clin. Nutr. 2009; 63: 340-346
        • Phivilay A.
        • Julien C.
        • Tremblay C.
        • Berthiaume L.
        • Julien P.
        • Giguere Y.
        • Calon F.
        High dietary consumption of trans fatty acids decreases brain docosahexaenoic acid but does not alter amyloid-beta and tau pathologies in the 3xTg-AD model of Alzheimer's disease.
        Neuroscience. 2009; 159: 296-307
        • Hornstra G.
        • van Eijsden M.
        • Dirix C.
        • Bonsel G
        Trans fatty acids and birth outcome: some first results of the MEFAB and ABCD cohorts.
        Atheroscler. Suppl. 2006; 7: 21-23
        • Ibrahim A.
        • Ghafoorunissa
        • Basak S.
        • Ehtesham N.Z.
        Impact of maternal dietary fatty acid composition on glucose and lipid metabolism in male rat offspring aged 105 d.
        Br. J. Nutr. 2009; 102: 233-241
        • Weiland S.K.
        • von Mutius E.
        • HiJsing A.
        • Asher M.I.
        Intake of trans fatty acids and prevalence of childhood asthma and allergies in Europe.
        The Lancet. 1999; 353: 2040-2041
        • Basak S.
        • Duttaroy A.K.
        cis-9,trans-11 conjugated linoleic acid stimulates expression of angiopoietin like-4 in the placental extravillous trophoblast cells.
        Biochim. Biophys. Acta. 2013; 1831: 834-843
      4. S. Pengpid, K. Peltzer, Prevalence and correlates of underweight and overweight/obesity among women in India: results from the National Family Health Survey 2015-2016, Diabetes, metabolic syndrome and obesity : targets and therapy, 12 (2019) 647–653.

        • Barker D.J.
        • Larsen G.
        • Osmond C.
        • Thornburg K.L.
        • Kajantie E.
        • Eriksson J.G.
        The placental origins of sudden cardiac death.
        Int. J. Epidemiol. 2012; 41: 1394-1399
        • Barker D.J.
        • Thornburg K.L.
        Placental programming of chronic diseases, cancer and lifespan: a review.
        Placenta. 2013; 34: 841-845
        • G.B.D.O. Collaborators
        Health effects of overweight and obesity in 195 countries over 25 years.
        N. Engl. J. Med. 2017; 377: 13-27
        • Wijendran V.
        • Bendel R.B.
        • Couch S.C.
        • Philipson E.H.
        • Thomsen K.
        • Zhang X.
        • Lammi-Keefe C.J.
        Maternal plasma phospholipid polyunsaturated fatty acids in pregnancy with and without gestational diabetes mellitus: relations with maternal factors.
        Am. J. Clin. Nutr. 1999; 70: 53-61
        • Saben J.
        • Lindsey F.
        • Zhong Y.
        • Thakali K.
        • Badger T.M.
        • Andres A.
        • Gomez-Acevedo H.
        • Shankar K.
        Maternal obesity is associated with a lipotoxic placental environment.
        Placenta. 2014; 35: 171-177
        • Dube E.
        • Gravel A.
        • Martin C.
        • Desparois G.
        • Moussa I.
        • Ethier-Chiasson M.
        • Forest J.C.
        • Giguere Y.
        • Masse A.
        • Lafond J.
        Modulation of fatty acid transport and metabolism by maternal obesity in the human full-term placenta.
        Biol. Reprod. 2012; 87: 11
        • Haghiac M.
        • Yang X.H.
        • Presley L.
        • Smith S.
        • Dettelback S.
        • Minium J.
        • Belury M.A.
        • Catalano P.M.
        • Hauguel-de Mouzon S.
        Dietary omega-3 fatty acid supplementation reduces inflammation in obese pregnant women: a randomized double-blind controlled clinical trial.
        PLoS One. 2015; 10e0137309
        • Mueller N.T.
        • Pereira M.A.
        Leg length and type 2 diabetes: what's the link?.
        Curr. Opin. Clin. Nutr. Metab. Care. 2015; 18: 452-456
        • Pisani D.F.
        • Ailhaud G.
        Involvement of polyunsaturated fatty acids in the control of energy storage and expenditure.
        OCL. 2019; 26: 37
        • Corey E.J.
        • Shih C.
        • Cashman J.R.
        Docosahexaenoic acid is a strong inhibitor of prostaglandin but not leukotriene biosynthesis.
        Proc. Natl. Acad. Sci. USA. 1983; 80: 3581-3584
        • Gaillard D.
        • Negrel R.
        • Lagarde M.
        • Ailhaud G.
        Requirement and role of arachidonic acid in the differentiation of pre-adipose cells.
        Biochem. J. 1989; 257: 389-397
        • Massiera F.
        • Barbry P.
        • Guesnet P.
        • Joly A.
        • Luquet S.
        • Moreilhon-Brest C.
        • Mohsen-Kanson T.
        • Amri E.Z.
        • Ailhaud G.
        A western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations.
        J. Lipid Res. 2010; 51: 2352-2361
        • Pisani D.F.
        • Ghandour R.A.
        • Beranger G.E.
        • Le Faouder P.
        • Chambard J.-.C.
        • Giroud M.
        • Vegiopoulos A.
        • Djedaini M.
        • Bertrand-Michel J.
        • Tauc M.
        • Herzig S.
        • Langin D.
        • Ailhaud G.
        • Duranton C.
        • Amri E.-.Z.
        The ω6-fatty acid, arachidonic acid, regulates the conversion of white to brite adipocyte through a prostaglandin/calcium mediated pathway.
        Mol. Metab. 2014; 3: 834-847
        • Buckley J.D.
        • Howe P.R.C.
        Long-chain omega-3 polyunsaturated fatty acids may be beneficial for reducing obesity-a review.
        Nutrients. 2010; 2: 1212-1230
        • Cheng L.
        • Yu Y.
        • Zhang Q.
        • Szabo A.
        • Wang H.
        • Huang X.F.
        Arachidonic acid impairs hypothalamic leptin signaling and hepatic energy homeostasis in mice.
        Mol. Cell Endocrinol. 2015; 412: 12-18
        • Kang J.X.
        • Wang J.
        • Wu L.
        • Kang Z.B.
        Transgenic mice: fat-1 mice convert n-6 to n-3 fatty acids.
        Nature. 2004; 427: 504
        • Li J.
        • Li F.R.
        • Wei D.
        • Jia W.
        • Kang J.X.
        • Stefanovic-Racic M.
        • Dai Y.
        • Zhao A.Z.
        Endogenous omega-3 polyunsaturated fatty acid production confers resistance to obesity, dyslipidemia, and diabetes in mice.
        Mol. Endocrinol. 2014; 28: 1316-1328
        • Kunesova M.
        • Braunerova R.
        • Hlavaty P.
        • Tvrzicka E.
        • Stankova B.
        • Skrha J.
        • Hilgertova J.
        • Hill M.
        • Kopecky J.
        • Wagenknecht M.
        • Hainer V.
        • Matoulek M.
        • Parizkova J.
        • Zak A.
        • Svacina S.
        The influence of n-3 polyunsaturated fatty acids and very low calorie diet during a short-term weight reducing regimen on weight loss and serum fatty acid composition in severely obese women.
        Physiol. Res. 2006; 55: 63-72
        • Parra D.
        • Ramel A.
        • Bandarra N.
        • Kiely M.
        • Martinez J.A.
        • Thorsdottir I.
        A diet rich in long chain omega-3 fatty acids modulates satiety in overweight and obese volunteers during weight loss.
        Appetite. 2008; 51: 676-680
        • Thorsdottir I.
        • Tomasson H.
        • Gunnarsdottir I.
        • Gisladottir E.
        • Kiely M.
        • Parra M.D.
        • Bandarra N.M.
        • Schaafsma G.
        • Martinez J.A.
        Randomized trial of weight-loss-diets for young adults varying in fish and fish oil content.
        Int. J. Obes. 2007; 31: 1560-1566
        • Sepa-Kishi D.M.
        • Ceddia R.B.
        White and beige adipocytes: are they metabolically distinct?.
        Horm. Mol. Biol. Clin. Investig. 2018; 33: 1-10
        • Wu J.
        • Bostrom P.
        • Sparks L.M.
        • Ye L.
        • Choi J.H.
        • Giang A.H.
        • Khandekar M.
        • Virtanen K.A.
        • Nuutila P.
        • Schaart G.
        • Huang K.
        • Tu H.
        • van Marken Lichtenbelt W.D.
        • Hoeks J.
        • Enerback S.
        • Schrauwen P.
        • Spiegelman B.M.
        Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human.
        Cell. 2012; 150: 366-376
        • Ikeda K.
        • Maretich P.
        • Kajimura S.
        The common and distinct features of brown and beige adipocytes.
        Trends Endocrinol. Metab. 2018; 29: 191-200
        • Kalinovich A.V.
        • de Jong J.M.
        • Cannon B.
        • Nedergaard J.
        UCP1 in adipose tissues: two steps to full browning.
        Biochimie. 2017; 134: 127-137
        • Swain-Lenz D.
        • Berrio A.
        • Safi A.
        • Crawford G.E.
        • Wray G.A.
        Comparative analyses of chromatin landscape in white adipose tissue suggest humans may have less beigeing potential than other primates.
        Genome Biol. Evol. 2019; 11: 1997-2008
        • Hiraike Y.
        • Waki H.
        • Yu J.
        • Nakamura M.
        • Miyake K.
        • Nagano G.
        • Nakaki R.
        • Suzuki K.
        • Kobayashi H.
        • Yamamoto S.
        • Sun W.
        • Aoyama T.
        • Hirota Y.
        • Ohno H.
        • Oki K.
        • Yoneda M.
        • White A.P.
        • Tseng Y.H.
        • Cypess A.M.
        • Larsen T.J.
        • Jespersen N.Z.
        • Scheele C.
        • Tsutsumi S.
        • Aburatani H.
        • Yamauchi T.
        • Kadowaki T.
        NFIA co-localizes with PPARgamma and transcriptionally controls the brown fat gene program.
        Nat. Cell Biol. 2017; 19: 1081-1092
        • Lund J.
        • Larsen L.H.
        • Lauritzen L.
        Fish oil as a potential activator of brown and beige fat thermogenesis.
        Adipocyte. 2018; 7: 88-95
        • Oudart H.
        • Groscolas R.
        • Calgari C.
        • Nibbelink M.
        • Leray C.
        • Le Maho Y.
        • Malan A.
        Brown fat thermogenesis in rats fed high-fat diets enriched with n-3 polyunsaturated fatty acids.
        Int. J. Obes. Relat. Metab. Disord. 1997; 21: 955-962
        • Ghandour R.A.
        • Colson C.
        • Giroud M.
        • Maurer S.
        • Rekima S.
        • Ailhaud G.
        • Klingenspor M.
        • Amri E.Z.
        • Pisani D.F.
        Impact of dietary omega3 polyunsaturated fatty acid supplementation on brown and brite adipocyte function.
        J. Lipid Res. 2018; 59: 452-461
        • Pahlavani M.
        • Razafimanjato F.
        • Ramalingam L.
        • Kalupahana N.S.
        • Moussa H.
        • Scoggin S.
        • Moustaid-Moussa N.
        Eicosapentaenoic acid regulates brown adipose tissue metabolism in high-fat-fed mice and in clonal brown adipocytes.
        J. Nutr. Biochem. 2017; 39: 101-109
        • Zhao M.
        • Chen X.
        Eicosapentaenoic acid promotes thermogenic and fatty acid storage capacity in mouse subcutaneous adipocytes.
        Biochem. Biophys. Res. Commun. 2014; 450: 1446-1451
        • Quesada-López T.
        • Cereijo R.
        • Turatsinze J.-.V.
        • Planavila A.
        • Cairó M.
        • Gavaldà-Navarro A.
        • Peyrou M.
        • Moure R.
        • Iglesias R.
        • Giralt M.
        • Eizirik D.L.
        • Villarroya F.
        The lipid sensor GPR120 promotes brown fat activation and FGF21 release from adipocytes.
        Nat. Commun. 2016; 7: 13479
        • Laiglesia L.M.
        • Lorente-Cebrián S.
        • Prieto-Hontoria P.L.
        • Fernández-Galilea M.
        • Ribeiro S.M.R.
        • Sáinz N.
        • Martínez J.A.
        • Moreno-Aliaga M.J.
        Eicosapentaenoic acid promotes mitochondrial biogenesis and beige-like features in subcutaneous adipocytes from overweight subjects.
        J. Nutr. Biochem. 2016; 37: 76-82
        • Domenichiello A.F.
        • Chen C.T.
        • Trepanier M.O.
        • Stavro P.M.
        • Bazinet R.P.
        Whole body synthesis rates of DHA from alpha-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats.
        J. Lipid Res. 2014; 55: 62-74
        • Brenna J.T.
        • Salem Jr., N.
        • Sinclair A.J.
        • Cunnane S.C.
        alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans.
        Prostaglandins Leukot Essent Fatty Acids. 2009; 80: 85-91
        • Chan J.P.
        • Wong B.H.
        • Chin C.F.
        • Galam D.L.A.
        • Foo J.C.
        • Wong L.C.
        • Ghosh S.
        • Wenk M.R.
        • Cazenave-Gassiot A.
        • Silver D.L.
        The lysolipid transporter Mfsd2a regulates lipogenesis in the developing brain.
        PLoS Biol. 2018; 16e2006443
        • Grayson D.S.
        • Kroenke C.D.
        • Neuringer M.
        • Fair D.A.
        Dietary omega-3 fatty acids modulate large-scale systems organization in the rhesus macaque brain.
        J. Neurosci. 2014; 34: 2065-2074
        • Groeschel S.
        • Vollmer B.
        • King M.D.
        • Connelly A.
        Developmental changes in cerebral grey and white matter volume from infancy to adulthood.
        Int. J. Dev. Neurosci. 2010; 28: 481-489
        • de la Presa Owens S.
        • Innis S.M.
        Docosahexaenoic and arachidonic acid prevent a decrease in dopaminergic and serotoninergic neurotransmitters in frontal cortex caused by a linoleic and alpha-linolenic acid deficient diet in formula-fed piglets.
        J. Nutr. 1999; 129: 2088-2093
        • Tokuda H.
        • Kontani M.
        • Kawashima H.
        • Kiso Y.
        • Shibata H.
        • Osumi N.
        Differential effect of arachidonic acid and docosahexaenoic acid on age-related decreases in hippocampal neurogenesis.
        Neurosci. Res. 2014; 88: 58-66
        • Kawakita E.
        • Hashimoto M.
        • Shido O.
        Docosahexaenoic acid promotes neurogenesis in vitro and in vivo.
        Neuroscience. 2006; 139: 991-997
        • Fu C.H.
        • Steiner H.
        • Costafreda S.G.
        Predictive neural biomarkers of clinical response in depression: a meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies.
        Neurobiol. Dis. 2013; 52: 75-83
        • Coti Bertrand P.
        • O'Kusky J.R.
        • Innis S.M.
        Maternal dietary (n-3) fatty acid deficiency alters neurogenesis in the embryonic rat brain.
        J. Nutr. 2006; 136: 1570-1575
        • Niculescu M.D.
        • Lupu D.S.
        • Craciunescu C.N.
        Perinatal manipulation of alpha-linolenic acid intake induces epigenetic changes in maternal and offspring livers.
        FASEB J. 2013; 27: 350-358
        • Tian C.
        • Fan C.
        • Liu X.
        • Xu F.
        • Qi K.
        Brain histological changes in young mice submitted to diets with different ratios of n-6/n-3 polyunsaturated fatty acids during maternal pregnancy and lactation.
        Clin. Nutr. 2011; 30: 659-667
        • Fan C.
        • Sun W.
        • Fu H.
        • Dong H.
        • Xia L.
        • Lu Y.
        • Deckelbaum R.J.
        • Qi K.
        Dietary ratios of n-6/n-3 polyunsaturated fatty acids during maternal pregnancy affect hippocampal neurogenesis and apoptosis in mouse offspring.
        Nutr. Hosp. 2015; 32: 1170-1179
        • Carrie I.
        • Clement M.
        • de Javel D.
        • Frances H.
        • Bourre J.M.
        Specific phospholipid fatty acid composition of brain regions in mice. Effects of n-3 polyunsaturated fatty acid deficiency and phospholipid supplementation.
        J. Lipid Res. 2000; 41: 465-472
        • Patrick R.P.
        • Ames B.N.
        Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar, schizophrenia, and impulsive behavior.
        FASEB J. 2015; 29: 2207-2222
        • Giltay E.J.
        • Gooren L.J.G.
        • Toorians A.W.F.T.
        • Katan M.B.
        • Zock P.L.
        Docosahexaenoic acid concentrations are higher in women than in men because of estrogenic effects.
        Am. J. Clin. Nutr. 2004; 80: 1167-1174
        • Auguste S.
        • Sharma S.
        • Fisette A.
        • Fernandes M.F.
        • Daneault C.
        • Des Rosiers C.
        • Fulton S.
        Perinatal deficiency in dietary omega-3 fatty acids potentiates sucrose reward and diet-induced obesity in mice.
        Int. J. Dev. Neurosci. 2018; 64: 8-13
        • Dragano N.R.V.
        • Solon C.
        • Ramalho A.F.
        • de Moura R.F.
        • Razolli D.S.
        • Christiansen E.
        • Azevedo C.
        • Ulven T.
        • Velloso L.A.
        Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation.
        J. Neuroinflamm. 2017; 14 (91)
        • Auguste S.
        • Fisette A.
        • Fernandes M.F.
        • Hryhorczuk C.
        • Poitout V.
        • Alquier T.
        • Fulton S.
        Central agonism of GPR120 acutely inhibits food intake and food reward and chronically suppresses anxiety-like behavior in mice.
        Int. J .Neuropsychopharmacol. 2016; 19: pyw014
        • Bondi C.O.
        • Taha A.Y.
        • Tock J.L.
        • Totah N.K.
        • Cheon Y.
        • Torres G.E.
        • Rapoport S.I.
        • Moghaddam B.
        Adolescent behavior and dopamine availability are uniquely sensitive to dietary omega-3 fatty acid deficiency.
        Biol. Psychiatry. 2014; 75: 38-46
        • Harauma A.
        • Moriguchi T.
        Dietary n-3 fatty acid deficiency in mice enhances anxiety induced by chronic mild stress.
        Lipids. 2011; 46: 409-416
        • Bhatia H.S.
        • Agrawal R.
        • Sharma S.
        • Huo Y.X.
        • Ying Z.
        • Gomez-Pinilla F.
        Omega-3 fatty acid deficiency during brain maturation reduces neuronal and behavioral plasticity in adulthood.
        PLoS One. 2011; 6: e28451
        • Pal C.P.
        • Singh P.
        • Chaturvedi S.
        • Pruthi K.K.
        • Vij A.
        Epidemiology of knee osteoarthritis in India and related factors.
        Indian J. Orthop. 2016; 50: 518-522
        • Yasobant S.
        • Mohanty S.
        Musculoskeletal disorders as a public health concern in India: a call for action.
        Physiother. – J. Indian Assoc. Physiother. 2018; 12: 46-47
        • Horrobin D.
        The role of dietary fat in bone and joint health.
        Prostaglandins, Leukotrienes Essential Fatty Acids. 2003; 68: 359
        • Quinn J.M.
        • Gillespie M.T.
        Modulation of osteoclast formation.
        Biochem. Biophys. Res. Commun. 2005; 328: 739-745
        • Poulsen R.C.
        • Moughan P.J.
        • Kruger M.C.
        Long-chain polyunsaturated fatty acids and the regulation of bone metabolism.
        Exp. Biol. Med. 2007; 232: 1275-1288
        • Yoshida K.
        • Oida H.
        • Kobayashi T.
        • Maruyama T.
        • Tanaka M.
        • Katayama T.
        • Yamaguchi K.
        • Segi E.
        • Tsuboyama T.
        • Matsushita M.
        • Ito K.
        • Ito Y.
        • Sugimoto Y.
        • Ushikubi F.
        • Ohuchida S.
        • Kondo K.
        • Nakamura T.
        • Narumiya S.
        Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation.
        Proc. Natl. Acad. Sci. USA. 2002; 99: 4580-4585
        • Griel A.E.
        • Kris-Etherton P.M.
        • Hilpert K.F.
        • Zhao G.
        • West S.G.
        • Corwin R.L.
        An increase in dietary n-3 fatty acids decreases a marker of bone resorption in humans.
        Nutr. J. 2007; 6: 2
        • Knott L.
        • Avery N.C.
        • Hollander A.P.
        • Tarlton J.F.
        Regulation of osteoarthritis by omega-3 (n-3) polyunsaturated fatty acids in a naturally occurring model of disease.
        Osteoarthr. Cartil. 2011; 19: 1150-1157
        • Huang M.-j.
        • Wang L.
        • Jin D.-d.
        • Zhang Z.-m.
        • Chen T.-y.
        • Jia C.-h.
        • Y. Wang
        • Zhen X.-c.
        • Huang B.
        • Yan B.
        • Chen Y.-h.
        • Li S.-f.
        • Yang J.-c.
        • Dai Y.-f.
        • Bai X.-c.
        Enhancement of the synthesis of n-3 PUFAs in fat-1 transgenic mice inhibits mTORC1 signalling and delays surgically induced osteoarthritis in comparison with wild-type mice.
        Ann. Rheum. Dis. 2014; 73: 1719
        • Bonnet N.
        • Ferrari S.L.
        Effects of long-term supplementation with omega-3 fatty acids on longitudinal changes in bone mass and microstructure in mice.
        J. Nutr. Biochem. 2011; 22: 665-672
        • Lukas R.
        • Gigliotti J.C.
        • Smith B.J.
        • Altman S.
        • Tou J.C.
        Consumption of different sources of omega-3 polyunsaturated fatty acids by growing female rats affects long bone mass and microarchitecture.
        Bone. 2011; 49: 455-462
        • Weiler H.A.
        • Zhao J.
        • Park L.
        • Kohut J.R.
        • Burr L.L.
        • Fitzpatrick-Wong S.C.
        Maternal supplementation with dietary arachidonic and docosahexaenoic acids during lactation elevates bone mass in weanling rat and guinea pig offspring even if born small sized.
        Prostaglandins, Leukotrienes Essential Fatty Acids. 2012; 86: 61-70
        • Koren N.
        • Simsa-Maziel S.
        • Shahar R.
        • Schwartz B.
        • Monsonego-Ornan E.
        Exposure to omega-3 fatty acids at early age accelerate bone growth and improve bone quality.
        J Nutr. Biochem. 2014; 25: 623-633
        • Casado-Diaz A.
        • Santiago-Mora R.
        • Dorado G.
        • Quesada-Gomez J.M.
        The omega-6 arachidonic fatty acid, but not the omega-3 fatty acids, inhibits osteoblastogenesis and induces adipogenesis of human mesenchymal stem cells: potential implication in osteoporosis.
        Osteoporos. Int. 2013; 24: 1647-1661
        • Hogstrom M.
        • Nordstrom P.
        • Nordstrom A.
        n-3 Fatty acids are positively associated with peak bone mineral density and bone accrual in healthy men: the NO2 Study.
        Am. J. Clin. Nutr. 2007; 85: 803-807
        • Fallon E.M.
        • Nazarian A.
        • Nehra D.
        • Pan A.H.
        • O'Loughlin A.A.
        • Nose V.
        • Puder M.
        The effect of docosahexaenoic acid on bone microstructure in young mice and bone fracture in neonates.
        J. Surg. Res. 2014; 191: 148-155
        • Li Y.
        • Seifert M.F.
        • Lim S.Y.
        • Salem Jr., N.
        • Watkins B.A.
        Bone mineral content is positively correlated to n-3 fatty acids in the femur of growing rats.
        Br. J. Nutr. 2010; 104: 674-685
        • Sun L.
        • Tamaki H.
        • Ishimaru T.
        • Teruya T.
        • Ohta Y.
        • Katsuyama N.
        • Chinen I.
        Inhibition of osteoporosis due to restricted food intake by the fish oils DHA and EPA and perilla oil in the rat.
        Biosci. Biotechnol. Biochem. 2004; 68: 2613-2615
        • Watkins B.A.
        • Li Y.
        • Seifert M.F.
        Dietary ratio of n-6/n-3 PUFAs and docosahexaenoic acid: actions on bone mineral and serum biomarkers in ovariectomized rats.
        J. Nutr. Biochem. 2006; 17: 282-289
        • Farina E.K.
        • Kiel D.P.
        • Roubenoff R.
        • Schaefer E.J.
        • Cupples L.A.
        • Tucker K.L.
        Dietary intakes of arachidonic acid and alpha-linolenic acid are associated with reduced risk of hip fracture in older adults.
        J. Nutr. 2011; 141: 1146-1153
        • Baker K.R.
        • Matthan N.R.
        • Lichtenstein A.H.
        • Niu J.
        • Guermazi A.
        • Roemer F.
        • Grainger A.
        • Nevitt M.C.
        • Clancy M.
        • Lewis C.E.
        • Torner J.C.
        • Felson D.T.
        Association of plasma n-6 and n-3 polyunsaturated fatty acids with synovitis in the knee: the MOST study.
        Osteoarthr. Cartil. 2012; 20: 382-387
        • Hill C.L.
        • March L.M.
        • Aitken D.
        • Lester S.E.
        • Battersby R.
        • Hynes K.
        • Fedorova T.
        • Proudman S.M.
        • James M.
        • Cleland L.G.
        • Jones G.
        Fish oil in knee osteoarthritis: a randomised clinical trial of low dose versus high dose.
        Ann. Rheum. Dis. 2016; 75: 23
        • Harvey N.
        • Dhanwal D.
        • Robinson S.
        • Kim M.
        • Inskip H.
        • Godfrey K.
        • Dennison E.
        • Calder P.
        • Cooper C.
        Does maternal long chain polyunsaturated fatty acid status in pregnancy influence the bone health of children? The Southampton women's survey.
        Osteoporos. Int. 2012; 23: 2359-2367
        • Heberden C.
        • Maximin E.
        Epigenetic effects of N-3 polyunsaturated fatty acids.
        in: Patel V. Preedy V. Handbook of Nutrition, Diet, and Epigenetics. Springer International Publishing, Cham2017: 1-15
        • Tremblay B.L.
        • Guénard F.
        • Rudkowska I.
        • Lemieux S.
        • Couture P.
        • Vohl M.-.C.
        Epigenetic changes in blood leukocytes following an omega-3 fatty acid supplementation.
        Clin. Epigenetics. 2017; 9: 43
        • Hussey B.
        • Lindley M.R.
        • Mastana S.S.
        Omega 3 fatty acids, inflammation and DNA methylation: an overview.
        Clin. Lipidol. 2017; 12: 24-32
        • Ma Y.
        • Smith C.E.
        • Lai C.-.Q.
        • Irvin M.R.
        • Parnell L.D.
        • Lee Y.-.C.
        • Pham L.D.
        • Aslibekyan S.
        • Claas S.A.
        • Tsai M.Y.
        • Borecki I.B.
        • Kabagambe E.K.
        • Ordovás J.M.
        • Absher D.M.
        • Arnett D.K.
        The effects of omega-3 polyunsaturated fatty acids and genetic variants on methylation levels of the interleukin-6 gene promoter.
        Mol. Nutr. Food Res. 2016; 60: 410-419
        • Huang Q.
        • Wen J.
        • Chen G.
        • Ge M.
        • Gao Y.
        • Ye X.
        • Liu C.
        • Cai C.
        Omega-3 polyunsaturated fatty acids inhibited tumor growth via preventing the decrease of genomic DNA methylation in colorectal cancer rats.
        Nutr. Cancer. 2016; 68: 113-119
        • Amaral C.L.
        • Crisma A.R.
        • Masi L.N.
        • Martins A.R.
        • Hirabara S.M.
        • Curi R.
        DNA methylation changes induced by a high-fat diet and fish oil supplementation in the skeletal muscle of mice.
        J. Nutrigenet. Nutrigenomics. 2014; 7: 314-326
        • Karimi M.
        • Vedin I.
        • Freund Levi Y.
        • Basun H.
        • Faxén Irving G.
        • Eriksdotter M.
        • Wahlund L.-.O.
        • Schultzberg M.
        • Hjorth E.
        • Cederholm T.
        • Palmblad J.
        DHA-rich n–3 fatty acid supplementation decreases DNA methylation in blood leukocytes: the OmegAD study.
        Am. J. Clin. Nutr. 2017; 106: 1157-1165
        • Aslibekyan S.
        • Wiener H.W.
        • Havel P.J.
        • Stanhope K.L.
        • O'Brien D.M.
        • Hopkins S.E.
        • Absher D.M.
        • Tiwari H.K.
        • Boyer B.B.
        DNA methylation patterns are associated with n-3 fatty acid intake in Yup'ik people.
        J. Nutr. 2014; 144: 425-430
        • Cui T.
        • Hester A.G.
        • Seeds M.C.
        • Rahbar E.
        • Howard T.D.
        • Sergeant S.
        • Chilton F.H.
        Impact of genetic and epigenetic variations within the FADS Cluster on the composition and metabolism of polyunsaturated fatty acids in prostate cancer.
        Prostate. 2016; 76: 1182-1191
        • Hoile S.P.
        • Clarke-Harris R.
        • Huang R.-.C.
        • Calder P.C.
        • Mori T.A.
        • Beilin L.J.
        • Lillycrop K.A.
        • Burdge G.C.
        Supplementation with N-3 long-chain polyunsaturated fatty acids or olive oil in men and women with renal disease induces differential changes in the DNA methylation of FADS2 and ELOVL5 in peripheral blood mononuclear cells.
        PLoS One. 2014; 9e109896
        • Burdge G.C.
        • Lillycrop K.A.
        Fatty acids and epigenetics.
        Curr. Opin. Clin. Nutr. Metab. Care. 2014; 17: 156-161
        • Rahbar E.
        • Waits C.M.K.
        • Kirby E.H.
        • Miller L.R.
        • Ainsworth H.C.
        • Cui T.
        • Sergeant S.
        • Howard T.D.
        • Langefeld C.D.
        • Chilton F.H.
        Allele-specific methylation in the FADS genomic region in DNA from human saliva, CD4+ cells, and total leukocytes.
        Clin. Epigenetics. 2018; 10: 46
        • Cheatham C.L.
        • Lupu D.S.
        • Niculescu M.D.
        Genetic and epigenetic transgenerational implications related to omega-3 fatty acids. Part II: maternal FADS2 rs174575 genotype and DNA methylation predict toddler cognitive performance.
        Nutr. Res. 2015; 35: 948-955
        • Amatruda M.
        • Ippolito G.
        • Vizzuso S.
        • Vizzari G.
        • Banderali G.
        • Verduci E.
        Epigenetic effects of n-3 LCPUFAs: a role in pediatric metabolic syndrome.
        Int. J. Mol. Sci. 2019; 20
        • Kulkarni A.
        • Dangat K.
        • Kale A.
        • Sable P.
        • Chavan-Gautam P.
        • Joshi S.
        Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats.
        PLoS One. 2011; 6: e17706
        • Haghighi F.
        • Galfalvy H.
        • Chen S.
        • Huang Y.-y.
        • Cooper T.B.
        • Burke A.K.
        • Oquendo M.A.
        • Mann J.J.
        • Sublette M.E.
        DNA methylation perturbations in genes involved in polyunsaturated fatty acid biosynthesis associated with depression and suicide risk.
        Front. Neurol. 2015; 6: 1-7
        • van Dijk S.J.
        • Zhou J.
        • Peters T.J.
        • Buckley M.
        • Sutcliffe B.
        • Oytam Y.
        • Gibson R.A.
        • McPhee A.
        • Yelland L.N.
        • Makrides M.
        • Molloy P.L.
        • Muhlhausler B.S.
        Effect of prenatal DHA supplementation on the infant epigenome: results from a randomized controlled trial.
        Clin. Epigenetics. 2016; 8: 114
        • Lee H.S.
        • Barraza-Villarreal A.
        • Hernandez-Vargas H.
        • Sly P.D.
        • Biessy C.
        • Ramakrishnan U.
        • Romieu I.
        • Herceg Z.
        Modulation of DNA methylation states and infant immune system by dietary supplementation with omega-3 PUFA during pregnancy in an intervention study.
        Am. J. Clin. Nutr. 2013; 98: 480-487
        • He F.
        • Lupu D.S.
        • Niculescu M.D.
        Perinatal α-linolenic acid availability alters the expression of genes related to memory and to epigenetic machinery, and the Mecp2 DNA methylation in the whole brain of mouse offspring.
        Int. J. Dev. Neurosci. 2014; 36: 38-44
        • Isaac A.R.
        • da Silva E.A.N.
        • de Matos R.J.B.
        • Augusto R.L.
        • Moreno G.M.M.
        • Mendonça I.P.
        • de Souza R.F.
        • Cabral-Filho P.E.
        • Rodrigues C.G.
        • Gonçalves-Pimentel C.
        • Rodrigues M.C.A.
        • da Silveira Andrade-da-Costa B.L.
        Low omega-6/omega-3 ratio in a maternal protein-deficient diet promotes histone-3 changes in progeny neural cells and favors leukemia inhibitory factor gene transcription.
        J. Nutr. Biochem. 2018; 55: 229-242
        • Ramaiyan B.
        • Talahalli R.R.
        Dietary unsaturated fatty acids modulate maternal dyslipidemia-induced DNA methylation and histone acetylation in placenta and fetal liver in rats.
        Lipids. 2018; 53: 581-588