Advertisement
Review Article| Volume 162, 102180, November 2020

Soluble epoxide hydrolase as a therapeutic target for obesity-induced disorders: roles of gut barrier function involved

  • Jianan Zhang
    Affiliations
    Department of Food Science, University of Massachusetts, Amherst, MA, United States
    Search for articles by this author
  • Maolin Tu
    Affiliations
    Department of Food Science, University of Massachusetts, Amherst, MA, United States

    Department of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
    Search for articles by this author
  • Zhenhua Liu
    Affiliations
    Nutrition and Cancer Prevention Laboratory, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States

    Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States

    Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
    Search for articles by this author
  • Guodong Zhang
    Correspondence
    Corresponding author.
    Affiliations
    Department of Food Science, University of Massachusetts, Amherst, MA, United States

    Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
    Search for articles by this author
Published:September 18, 2020DOI:https://doi.org/10.1016/j.plefa.2020.102180

      Highlights

      • Soluble epoxide hydrolase (sEH), an important enzyme involved in fatty acid metabolism, is upregulated in many tissues of obese animals.
      • Substantial studies have shown that genetic ablation or pharmacological inhibition of sEH attenuates the development of a wide range of obesity-induced disorders.
      • Our recent research has shown that genetic ablation or inhibition of sEH attenuates obesity-induced intestinal barrier dysfunction and its resulted bacterial translocation, which is widely regarded to be a central mechanism for the pathogenesis of various obesity-induced disorders.

      Abstract

      Emerging research supports that soluble epoxide hydrolase (sEH), an enzyme involved in eicosanoid metabolism, could be a promising target for obesity-associated disorders. The sEH enzyme is overexpressed in many tissues of obese animals. Genetic ablation or pharmacological inhibition of sEH attenuates the development of a wide range of obesity-induced disorders, including endoplasmic reticulum stress, metabolic syndrome, kidney diseases, insulin resistance, fatty liver, hepatic steatosis, inflammation, and endothelial dysfunction. Furthermore, our recent research showed that genetic ablation or inhibition of sEH attenuated obesity-induced intestinal barrier dysfunction and its resulted bacterial translocation, which is widely regarded to be a central mechanism for the pathogenesis of various obesity-induced disorders. Together, these results support that targeting sEH could be a promising strategy to reduce risks of obesity-induced disorders, at least in part through blocking obesity-induced leaky gut syndrome.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Flegal K.M.
        • Carroll M.D.
        • Kit B.K.
        • Ogden C.L.
        Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010.
        JAMA. 2012; 307: 491-497
        • Ogden C.L.
        • Carroll M.D.
        • Kit B.K.
        • Flegal K.M.
        Prevalence of obesity and trends in body mass index among US children and adolescents, 1999-2010.
        JAMA. 2012; 307: 483-490
        • Bray G.A.
        Medical consequences of obesity.
        J Clin Endocrinol Metab. 2004; 89: 2583-2589
        • Siegel R.L.
        • Miller K.D.
        • Jemal A.
        Cancer statistics, 2016.
        CA Cancer J Clin. 2016; 66: 7-30
        • Moghaddam A.A.
        • Woodward M.
        • Huxley R.
        Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events.
        Cancer Epidemiol Biomarkers Prev. 2007; 16: 2533-2547
        • Roberts D.L.
        • Dive C.
        • Renehan A.G.
        Biological mechanisms linking obesity and cancer risk: new perspectives.
        Annu Rev Med. 2010; 61: 301-316
        • Wang W.
        • Yang J.
        • Zhang J.
        • Wang Y.
        • Hwang S.H.
        • Qi W.
        • Wan D.
        • Kim D.
        • Sun J.
        • Sanidad K.Z.
        • Yang H.
        • Park Y.
        • Liu J.Y.
        • Zhao X.
        • Zheng X.
        • Liu Z.
        • Hammock B.D.
        • Zhang G.
        Lipidomic profiling reveals soluble epoxide hydrolase as a therapeutic target of obesity-induced colonic inflammation.
        Proc Natl Acad Sci U S A. 2018; 115: 5283-5288
        • Liu Y.
        • Dang H.
        • Li D.
        • Pang W.
        • Hammock B.D.
        • Zhu Y.
        Inhibition of soluble epoxide hydrolase attenuates high-fat-diet–induced hepatic steatosis by reduced systemic inflammatory status in mice.
        PLoS ONE. 2012; 7: e39165
        • López-Vicario C.
        • Alcaraz-Quiles J.
        • García-Alonso V.
        • Rius B.
        • Hwang S.H.
        • Titos E.
        • Lopategi A.
        • Hammock B.D.
        • Arroyo V.
        • Clària J.
        Inhibition of soluble epoxide hydrolase modulates inflammation and autophagy in obese adipose tissue and liver: role for omega-3 epoxides.
        Proc Natl Acad Sci. 2015; 112: 536-541
        • Luo Y.
        • Wu M.Y.
        • Deng B.Q.
        • Huang J.
        • Hwang S.H.
        • Li M.Y.
        • Zhou C.Y.
        • Zhang Q.Y.
        • Yu H.B.
        • Zhao D.K.
        • Zhang G.
        • Qin L.
        • Peng A.
        • Hammock B.D.
        • Liu J.Y.
        Inhibition of soluble epoxide hydrolase attenuates a high-fat diet-mediated renal injury by activating PAX2 and AMPK.
        Proc Natl Acad Sci U S A. 2019; 116: 5154-5159
        • Bettaieb A.
        • Nagata N.
        • AbouBechara D.
        • Chahed S.
        • Morisseau C.
        • Hammock B.D.
        • Haj F.G.
        Soluble epoxide hydrolase deficiency or inhibition attenuates diet-induced endoplasmic reticulum stress in liver and adipose tissue.
        J Biol Chem. 2013; 288: 14189-14199
        • do Carmo J.M.
        • da Silva A.A.
        • Morgan J.
        • Jim Wang Y.X.
        • Munusamy S.
        • Hall J.E.
        Inhibition of soluble epoxide hydrolase reduces food intake and increases metabolic rate in obese mice.
        Nutr Metab Cardiovasc Dis. 2012; 22: 598-604
        • Imig J.D.
        • Walsh K.A.
        • Hye Khan M.A.
        • Nagasawa T.
        • Cherian-Shaw M.
        • Shaw S.M.
        • Hammock B.D.
        Soluble epoxide hydrolase inhibition and peroxisome proliferator activated receptor gamma agonist improve vascular function and decrease renal injury in hypertensive obese rats.
        Exp Biol Med (Maywood). 2012; 237: 1402-1412
        • Iyer A.
        • Kauter K.
        • Alam M.A.
        • Hwang S.H.
        • Morisseau C.
        • Hammock B.D.
        • Brown L.
        Pharmacological inhibition of soluble epoxide hydrolase ameliorates diet-induced metabolic syndrome in rats.
        Exp Diabetes Res. 2012; 758614
        • Liu Y.
        • Dang H.
        • Li D.
        • Pang W.
        • Hammock B.D.
        • Zhu Y.
        Inhibition of soluble epoxide hydrolase attenuates high-fat-diet-induced hepatic steatosis by reduced systemic inflammatory status in mice.
        PLoS ONE. 2012; 7: e39165
        • Lopez-Vicario C.
        • Alcaraz-Quiles J.
        • Garcia-Alonso V.
        • Rius B.
        • Hwang S.H.
        • Titos E.
        • Lopategi A.
        • Hammock B.D.
        • Arroyo V.
        • Claria J.
        Inhibition of soluble epoxide hydrolase modulates inflammation and autophagy in obese adipose tissue and liver: role for omega-3 epoxides.
        Proc Natl Acad Sci U S A. 2015; 112: 536-541
        • Roche C.
        • Besnier M.
        • Cassel R.
        • Harouki N.
        • Coquerel D.
        • Guerrot D.
        • Nicol L.
        • Loizon E.
        • Remy-Jouet I.
        • Morisseau C.
        • Mulder P.
        • Ouvrard-Pascaud A.
        • Madec A.M.
        • Richard V.
        • Bellien J.
        Soluble epoxide hydrolase inhibition improves coronary endothelial function and prevents the development of cardiac alterations in obese insulin-resistant mice.
        Am J Physiol Heart Circ Physiol. 2015; 308: H1020-H1029
        • Zha W.
        • Edin M.L.
        • Vendrov K.C.
        • Schuck R.N.
        • Lih F.B.
        • Jat J.L.
        • Bradbury J.A.
        • DeGraff L.M.
        • Hua K.
        • Tomer K.B.
        • Falck J.R.
        • Zeldin D.C.
        • Lee C.R.
        Functional characterization of cytochrome P450-derived epoxyeicosatrienoic acids in adipogenesis and obesity.
        J Lipid Res. 2014; 55: 2124-2136
        • Zhang L.N.
        • Vincelette J.
        • Chen D.
        • Gless R.D.
        • Anandan S.K.
        • Rubanyi G.M.
        • Webb H.K.
        • MacIntyre D.E.
        • Wang Y.X.
        Inhibition of soluble epoxide hydrolase attenuates endothelial dysfunction in animal models of diabetes, obesity and hypertension.
        Eur J Pharmacol. 2011; 654: 68-74
      1. Y. Wang, J. Yang, W. Wang, K.Z. Sanidad, M.A. Cinelli, D. Wan, S.H. Hwang, D. Kim, K.S.S. Lee, H. Xiao, B.D. Hammock, G. Zhang, Soluble epoxide hydrolase is an endogenous regulator of obesity-induced intestinal barrier dysfunction and bacterial translocation, Proc Natl Acad Sci U S A, (2020) 201916189.

        • Thaiss C.A.
        • Levy M.
        • Grosheva I.
        • Zheng D.
        • Soffer E.
        • Blacher E.
        • Braverman S.
        • Tengeler A.C.
        • Barak O.
        • Elazar M.
        Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection.
        Science. 2018; 359: 1376-1383
        • Shen J.
        • Obin M.S.
        • Zhao L.
        The gut microbiota, obesity and insulin resistance.
        Mol. Aspects Med. 2013; 34: 39-58
        • Vajro P.
        • Paolella G.
        • Fasano A.
        Microbiota and gut-liver axis: A mini-review on their influences on obesity and obesity related liver disease.
        J. Pediatr. Gastroenterol. Nutr. 2013; 56: 461
        • Lazaar A.L.
        • Yang L.
        • Boardley R.L.
        • Goyal N.S.
        • Robertson J.
        • Baldwin S.J.
        • Newby D.E.
        • Wilkinson I.B.
        • Tal-Singer R.
        • Mayer R.J.
        • Cheriyan J.
        Pharmacokinetics, pharmacodynamics and adverse event profile of GSK2256294, a novel soluble epoxide hydrolase inhibitor.
        Br. J. Clin. Pharmacol. 2016; 81: 971-979
        • McReynolds C.
        • Schmidt W.K.
        • Wagner K.
        • Hammock B.D.
        Advancing Soluble Epoxide Hydrolase Inhibitors Through the Valley of Death into Phase 1 Clinical Trials for Treating Painful Diabetic Neuropathy by Utilizing University Partnerships, Collaborations, and NIH Support.
        The FASEB Journal. 2016; 30 (1276): 1272
        • Zhang G.
        • Kodani S.
        • Hammock B.D.
        Stabilized epoxygenated fatty acids regulate inflammation, pain, angiogenesis and cancer.
        Prog. Lipid Res. 2014; 53: 108-123
        • Node K.
        • Huo Y.
        • Ruan X.
        • Yang B.
        • Spiecker M.
        • Ley K.
        • Zeldin D.C.
        • Liao J.K.
        Anti-inflammatory Properties of Cytochrome P450 Epoxygenase-Derived Eicosanoids.
        Science. 1999; 285: 1276-1279
        • Panigrahy D.
        • Edin M.L.
        • Lee C.R.
        • Huang S.
        • Bielenberg D.R.
        • Butterfield C.E.
        • Barnes C.M.
        • Mammoto A.
        • Mammoto T.
        • Luria A.
        • Benny O.
        • Chaponis D.M.
        • Dudley A.C.
        • Greene E.R.
        • Vergilio J.A.
        • Pietramaggiori G.
        • Scherer-Pietramaggiori S.S.
        • Short S.M.
        • Seth M.
        • Lih F.B.
        • Tomer K.B.
        • Yang J.
        • Schwendener R.A.
        • Hammock B.D.
        • Falck J.R.
        • Manthati V.L.
        • Ingber D.E.
        • Kaipainen A.
        • D'Amore P.A.
        • Kieran M.W.
        • Zeldin D.C.
        Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice.
        J. Clin. Invest. 2012; 122: 178-191
        • Zhang G.
        • Panigrahy D.
        • Mahakian L.M.
        • Yang J.
        • Liu J.Y.
        • Stephen Lee K.S.
        • Wettersten H.I.
        • Ulu A.
        • Hu X.
        • Tam S.
        • Hwang S.H.
        • Ingham E.S.
        • Kieran M.W.
        • Weiss R.H.
        • Ferrara K.W.
        • Hammock B.D.
        Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis.
        Proc. Natl. Acad. Sci. USA. 2013; 110: 6530-6535
        • Wang W.
        • Yang J.
        • Qi W.
        • Yang H.
        • Wang C.
        • Tan B.
        • Hammock B.D.
        • Park Y.
        • Kim D.
        • Zhang G.
        Lipidomic profiling of high-fat diet-induced obesity in mice: importance of cytochrome P450-derived fatty acid epoxides.
        Obesity (Silver Spring). 2017; 25: 132-140
        • Wang W.
        • Yang J.
        • Yang H.
        • Sanidad K.Z.
        • Hammock B.D.
        • Kim D.
        • Zhang G.
        Effects of high-fat diet on plasma profiles of eicosanoid metabolites in mice.
        Prostaglandins Other Lipid Mediat. 2016; 127: 9-13
        • Hariri N.
        • Thibault L.
        High-fat diet-induced obesity in animal models.
        Nutr. Res. Rev. 2010; 23: 270-299
        • De Taeye B.M.
        • Morisseau C.
        • Coyle J.
        • Covington J.W.
        • Luria A.
        • Yang J.
        • Murphy S.B.
        • Friedman D.B.
        • Hammock B.B.
        • Vaughan D.E.
        Expression and regulation of soluble epoxide hydrolase in adipose tissue.
        Obesity. 2010; 18: 489-498
        • Bettaieb A.
        • Nagata N.
        • AbouBechara D.
        • Chahed S.
        • Morisseau C.
        • Hammock B.D.
        • Haj F.G.
        Soluble epoxide hydrolase deficiency or inhibition attenuates diet-induced endoplasmic reticulum stress in liver and adipose tissue.
        Journal of Biological Chemistry. 2013; 288: 14189-14199
        • Oana F.
        • Takeda H.
        • Hayakawa K.
        • Matsuzawa A.
        • Akahane S.
        • Isaji M.
        • Akahane M.
        Physiological difference between obese (fa/fa) Zucker rats and lean Zucker rats concerning adiponectin.
        Metabolism. 2005; 54: 995-1001
        • Zhao X.
        • Dey A.
        • Romanko O.P.
        • Stepp D.W.
        • Wang M.-.H.
        • Zhou Y.
        • Jin L.
        • Pollock J.S.
        • Webb R.C.
        • Imig J.D.
        Decreased epoxygenase and increased epoxide hydrolase expression in the mesenteric artery of obese Zucker rats, American Journal of Physiology-Regulatory.
        Integrative and Comparative Physiology. 2005; 288: R188-R196
        • Roche C.
        • Besnier M.
        • Cassel R.
        • Harouki N.
        • Coquerel D.
        • Guerrot D.
        • Nicol L.
        • Loizon E.
        • Remy-Jouet I.
        • Morisseau C.
        Soluble epoxide hydrolase inhibition improves coronary endothelial function and prevents the development of cardiac alterations in obese insulin-resistant mice.
        American Journal of Physiology-Heart and Circulatory Physiology. 2015; 308: H1020-H1029
        • Zhao X.
        • Quigley J.E.
        • Yuan J.
        • Wang M.-.H.
        • Zhou Y.
        • Imig J.D.
        PPAR-α activator fenofibrate increases renal CYP-derived eicosanoid synthesis and improves endothelial dilator function in obese Zucker rats.
        American Journal of Physiology-Heart and Circulatory Physiology. 2006; 290: H2187-H2195
        • Theken K.N.
        • Schuck R.N.
        • Edin M.L.
        • Tran B.
        • Ellis K.
        • Bass A.
        • Lih F.B.
        • Tomer K.B.
        • Poloyac S.M.
        • Wu M.C.
        Evaluation of cytochrome P450-derived eicosanoids in humans with stable atherosclerotic cardiovascular disease.
        Atherosclerosis. 2012; 222: 530-536
        • Pickens C.A.
        • Sordillo L.M.
        • Zhang C.
        • Fenton J.I.
        Obesity is positively associated with arachidonic acid-derived 5-and 11-hydroxyeicosatetraenoic acid (HETE).
        Metabolism. 2017; 70: 177-191
        • Gulhane M.
        • Murray L.
        • Lourie R.
        • Tong H.
        • Sheng Y.H.
        • Wang R.
        • Kang A.
        • Schreiber V.
        • Wong K.Y.
        • Magor G.
        • Denman S.
        • Begun J.
        • Florin T.H.
        • Perkins A.
        • Cuív P.Ó.
        • McGuckin M.A.
        • Hasnain S.Z.
        High Fat Diets Induce Colonic Epithelial Cell Stress and Inflammation that is Reversed by IL-22.
        Sci Rep. 2016; 6: 28990
        • Kim K.A.
        • Gu W.
        • Lee I.A.
        • Joh E.H.
        • Kim D.H.
        High Fat Diet-Induced Gut Microbiota Exacerbates Inflammation and Obesity in Mice via the TLR4 Signaling Pathway.
        PLoS ONE. 2012; 7: e47713
        • Liu Z.
        • Brooks R.S.
        • Ciappio E.D.
        • Kim S.J.
        • Crott J.W.
        • Bennett G.
        • Greenberg A.S.
        • Mason J.B.
        Diet-induced obesity elevates colonic TNF-alpha in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer.
        J Nutr Biochem. 2012; 23: 1207-1213
        • Terzic J.
        • Grivennikov S.
        • Karin E.
        • Karin M.
        Inflammation and colon cancer.
        Gastroenterology. 2010; 138 (e2105): 2101-2114
        • Ma Y.
        • Yang Y.
        • Wang F.
        • Zhang P.
        • Shi C.
        • Zou Y.
        • Qin H.
        Obesity and Risk of Colorectal Cancer: a Systematic Review of Prospective Studies.
        PLoS ONE. 2013; 8: e53916
        • Enayetallah A.E.
        • French R.A.
        • Grant D.F.
        Distribution of soluble epoxide hydrolase, cytochrome P450 2C8, 2C9 and 2J2 in human malignant neoplasms.
        J Mol Histol. 2006; 37: 133-141
        • Zhang W.
        • Li H.
        • Dong H.
        • Liao J.
        • Hammock B.D.
        • Yang G.Y.
        Soluble epoxide hydrolase deficiency inhibits dextran sulfate sodium-induced colitis and carcinogenesis in mice.
        Anticancer Res. 2013; 33: 5261-5271
        • Zhang W.
        • Yang A.L.
        • Liao J.
        • Li H.
        • Dong H.
        • Chung Y.T.
        • Bai H.
        • Matkowskyj K.A.
        • Hammock B.D.
        • Yang G.Y.
        Soluble epoxide hydrolase gene deficiency or inhibition attenuates chronic active inflammatory bowel disease in IL-10(-/-) mice.
        Dig Dis Sci. 2012; 57: 2580-2591
        • Zhang W.
        • Liao J.
        • Li H.
        • Dong H.
        • Bai H.
        • Yang A.
        • Hammock B.D.
        • Yang G.Y.
        Reduction of inflammatory bowel disease-induced tumor development in IL-10 knockout mice with soluble epoxide hydrolase gene deficiency.
        Mol Carcinog. 2013; 52: 726-738
        • Movahedi M.
        • Bishop D.T.
        • Macrae F.
        • Mecklin J.-.P.
        • Moeslein G.
        • Olschwang S.
        • Eccles D.
        • Evans D.G.
        • Maher E.R.
        • Bertario L.
        • Obesity aspirin
        and risk of colorectal cancer in carriers of hereditary colorectal cancer: a prospective investigation in the CAPP2 study.
        Journal of Clinical Oncology. 2015;
        • Spengler E.K.
        • Loomba R.
        Recommendations for Diagnosis, Referral for Liver Biopsy, and Treatment of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis.
        Mayo Clin Proc. 2015; 90: 1233-1246
        • Brunt E.M.
        • Wong V.W.S.
        • Nobili V.
        • Day C.P.
        • Sookoian S.
        • Maher J.J.
        • Bugianesi E.
        • Sirlin C.B.
        • Neuschwander-Tetri B.A.
        • Rinella M.E.
        Nonalcoholic fatty liver disease.
        Nature reviews Disease primers. 2015; 1: 1-22
        • Schuck R.N.
        • Zha W.
        • Edin M.L.
        • Gruzdev A.
        • Vendrov K.C.
        • Miller T.M.
        • Xu Z.
        • Lih F.B.
        • DeGraff L.M.
        • Tomer K.B.
        The cytochrome P450 epoxygenase pathway regulates the hepatic inflammatory response in fatty liver disease.
        PLoS ONE. 2014; 9e110162
        • Chen G.
        • Xu R.
        • Zhang S.
        • Wang Y.
        • Wang P.
        • Edin M.L.
        • Zeldin D.C.
        • Wang D.W.
        CYP2J2 overexpression attenuates nonalcoholic fatty liver disease induced by high-fat diet in mice.
        American Journal of Physiology-Endocrinology and Metabolism. 2015; 308: E97-E110
        • Zhang J.
        • Yang J.
        • Wang W.
        • Yang H.
        • Sanidad K.Z.
        • Yang S.H.
        • Sukamtoh E.
        • Zhang G.
        Pharmacological inhibition or genetic ablation of soluble epoxide hydrolase attenuates obesity-induced nonalcoholic fatty liver disease.
        The FASEB Journal. 2018; 32 (567-560.567): 560
        • Stumvoll M.
        • Goldstein B.J.
        • van Haeften T.W.
        Type 2 diabetes: pathogenesis and treatment.
        Lancet. 2008; 371: 2153-2156
        • Surwit R.S.
        • Kuhn C.M.
        • Cochrane C.
        • McCubbin J.A.
        • Feinglos M.N.
        Diet-Induced Type II Diabetes in C57BL/6 J Mice.
        Diabetes. 1988; 37: 1163
        • Luria A.
        • Bettaieb A.
        • Xi Y.
        • Shieh G.J.
        • Liu H.C.
        • Inoue H.
        • Tsai H.J.
        • Imig J.D.
        • Haj F.G.
        • Hammock B.D.
        Soluble epoxide hydrolase deficiency alters pancreatic islet size and improves glucose homeostasis in a model of insulin resistance.
        Proc. Natl. Acad. Sci. 2011; 108: 9038-9043
        • Zhang L.N.
        • Vincelette J.
        • Chen D.
        • Gless R.D.
        • Anandan S.K.
        • Rubanyi G.M.
        • Webb H.K.
        • MacIntyre D.E.
        • Wang Y.-X.J.
        Inhibition of soluble epoxide hydrolase attenuates endothelial dysfunction in animal models of diabetes, obesity and hypertension.
        Eur. J. Pharmacol. 2011; 654: 68-74
        • Luo P.
        • Chang H.H.
        • Zhou Y.
        • Zhang S.
        • Hwang S.H.
        • Morisseau C.
        • Wang C.Y.
        • Inscho E.W.
        • Hammock B.D.
        • Wang M.H.
        Inhibition or deletion of soluble epoxide hydrolase prevents hyperglycemia, promotes insulin secretion, and reduces islet apoptosis.
        Journal of Pharmacology and Experimental Therapeutics. 2010; 334: 430-438
        • Ramirez C.E.
        • Shuey M.M.
        • Milne G.L.
        • Gilbert K.
        • Hui N.
        • Yu C.
        • Luther J.M.
        • Brown N.J.
        Arg287Gln variant of EPHX2 and epoxyeicosatrienoic acids are associated with insulin sensitivity in humans.
        Prostaglandins Other Lipid Mediat. 2014; 113: 38-44
        • M.athew A.V.
        • Okada S.
        • Sharma K.
        Obesity related kidney disease.
        Curr Diabetes Rev. 2011; 7: 41-49
        • Huang H.
        • Morisseau C.
        • Wang J.
        • Yang T.
        • Falck J.R.
        • Hammock B.D.
        • Wang M.H.
        Increasing or stabilizing renal epoxyeicosatrienoic acid production attenuates abnormal renal function and hypertension in obese rats.
        Am J Physiol Renal Physiol. 2007; 293: F342-F349
        • Roche C.
        • Guerrot D.
        • Harouki N.
        • Duflot T.
        • Besnier M.
        • Remy-Jouet I.
        • Renet S.
        • Dumesnil A.
        • Lejeune A.
        • Morisseau C.
        • Richard V.
        • Bellien J.
        Impact of soluble epoxide hydrolase inhibition on early kidney damage in hyperglycemic overweight mice.
        Prostaglandins Other Lipid Mediat. 2015; 120: 148-154
        • Khan M.A.H.
        • Hwang S.H.
        • Sharma A.
        • Corbett J.A.
        • Hammock B.D.
        • Imig J.D.
        A dual COX-2/sEH inhibitor improves the metabolic profile and reduces kidney injury in Zucker diabetic fatty rat.
        Prostaglandins Other Lipid Mediat. 2016; 125: 40-47
        • Cani P.D.
        • Amar J.
        • Iglesias M.A.
        • Poggi M.
        • Knauf C.
        • Bastelica D.
        • Neyrinck A.M.
        • Fava F.
        • Tuohy K.M.
        • Chabo C.
        Metabolic endotoxemia initiates obesity and insulin resistance.
        Diabetes. 2007; 56: 1761-1772
        • Neves A.L.
        • Coelho J.
        • Couto L.
        • Leite-Moreira A.
        • Roncon-Albuquerque Jr, R.
        Metabolic endotoxemia: a molecular link between obesity and cardiovascular risk.
        J Mol Endocrinol. 2013; 51: R51-R64
        • Cani P.D.
        • Bibiloni R.
        • Knauf C.
        • Waget A.
        • Neyrinck A.M.
        • Delzenne N.M.
        • Burcelin R.
        Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice.
        Diabetes. 2008; 57: 1470-1481
        • Boutagy N.E.
        • McMillan R.P.
        • Frisard M.I.
        • Hulver M.W.
        Metabolic endotoxemia with obesity: is it real and is it relevant?.
        Biochimie. 2016; 124: 11-20
        • Zhang W.
        • Xu J.H.
        • Yu T.
        • Chen Q.-.K.
        Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice.
        Biomedicine & Pharmacotherapy. 2019; 118109131
        • Brun P.
        • Castagliuolo I.
        • Leo V.D.
        • Buda A.
        • Pinzani M.
        • Palù G.
        • Martines D.
        Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis.
        American Journal of Physiology-Gastrointestinal and Liver Physiology. 2007; 292: G518-G525
        • Stenman L.K.
        • Holma R.
        • Korpela R.
        High-fat-induced intestinal permeability dysfunction associated with altered fecal bile acids.
        World journal of gastroenterology: WJG. 2012; 18: 923
        • Cremonini E.
        • Wang Z.
        • Bettaieb A.
        • Adamo A.M.
        • Daveri E.
        • Mills D.A.
        • Kalanetra K.M.
        • Haj F.G.
        • Karakas S.
        • Oteiza P.I.
        (-)-Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization: implications for steatosis and insulin resistance.
        Redox Biol. 2018; 14: 588-599
        • Everard A.
        • Belzer C.
        • Geurts L.
        • Ouwerkerk J.P.
        • Druart C.
        • Bindels L.B.
        • Guiot Y.
        • Derrien M.
        • Muccioli G.G.
        • Delzenne N.M.
        Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity.
        Proc. Natl. Acad. Sci. 2013; 110: 9066-9071
        • Pendyala S.
        • Walker J.M.
        • Holt P.R.
        A high-fat diet is associated with endotoxemia that originates from the gut.
        Gastroenterology. 2012; 142 (e1102): 1100-1101
        • Erridge C.
        • Attina T.
        • Spickett C.M.
        • Webb D.J.
        A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation.
        Am. J. Clin. Nutr. 2007; 86: 1286-1292
        • Basu S.
        • Haghiac M.
        • Surace P.
        • Challier J.C.
        • Guerre‐Millo M.
        • Singh K.
        • Waters T.
        • Minium J.
        • Presley L.
        • Catalano P.M.
        Pregravid obesity associates with increased maternal endotoxemia and metabolic inflammation.
        Obesity. 2011; 19: 476-482
        • Radilla-Vázquez R.B.
        • Parra-Rojas I.
        • Martínez-Hernández N.E.
        • Márquez-Sandoval Y.F.
        • Illades-Aguiar B.
        • Castro-Alarcón N.
        Gut microbiota and metabolic endotoxemia in young obese Mexican subjects.
        Obes Facts. 2016; 9: 1-11
        • Genser L.
        • Aguanno D.
        • Soula H.A.
        • Dong L.
        • Trystram L.
        • Assmann K.
        • Salem J.E.
        • Vaillant J.C.
        • Oppert J.M.
        • Laugerette F.
        Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes.
        J. Pathol. 2018; 246: 217-230
        • Rainone V.
        • Schneider L.
        • Saulle I.
        • Ricci C.
        • Biasin M.
        • Al-Daghri N.
        • Giani E.
        • Zuccotti G.
        • Clerici M.
        • Trabattoni D.
        Upregulation of inflammasome activity and increased gut permeability are associated with obesity in children and adolescents.
        Int J Obes. 2016; 40: 1026
        • Bäckhed F.
        • Manchester J.K.
        • Semenkovich C.F.
        • Gordon J.I.
        Mechanisms underlying the resistance to diet-induced obesity in germ-free mice.
        Proc. Natl. Acad. Sci. 2007; 104: 979-984
        • Rabot S.
        • Membrez M.
        • Bruneau A.
        • Gérard P.
        • Harach T.
        • Moser M.
        • Raymond F.
        • Mansourian R.
        • Chou C.J.
        Germ-free C57BL/6 J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism.
        The FASEB Journal. 2010; 24: 4948-4959
        • Dapito D.H.
        • Mencin A.
        • Gwak G.-.Y.
        • Pradere J.-.P.
        • Jang M.-.K.
        • Mederacke I.
        • Caviglia J.M.
        • Khiabanian H.
        • Adeyemi A.
        • Bataller R.
        • Lefkowitch J.H.
        • Bower M.
        • Friedman R.
        • Sartor R.B.
        • Rabadan R.
        • Schwabe R.F.
        Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4.
        Cancer Cell. 2012; 21: 504-516
        • Bischoff S.C.
        • Barbara G.
        • Buurman W.
        • Ockhuizen T.
        • Schulzke J.D.
        • Serino M.
        • Tilg H.
        • Watson A.
        • Wells J.M.
        Intestinal permeability–a new target for disease prevention and therapy.
        BMC Gastroenterol. 2014; 14: 189
        • Thaiss C.A.
        • Levy M.
        • Grosheva I.
        • Zheng D.
        • Soffer E.
        • Blacher E.
        • Braverman S.
        • Tengeler A.C.
        • Barak O.
        • Elazar M.
        • Ben-Zeev R.
        • Lehavi-Regev D.
        • Katz M.N.
        • Pevsner-Fischer M.
        • Gertler A.
        • Halpern Z.
        • Harmelin A.
        • Aamar S.
        • Serradas P.
        • Grosfeld A.
        • Shapiro H.
        • Geiger B.
        • Elinav E.
        Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection.
        Science. 2018; 359: 1376-1383
        • Lassenius M.I.
        • Pietiläinen K.H.
        • Kaartinen K.
        • Pussinen P.J.
        • Syrjänen J.
        • Forsblom C.
        • Pörsti I.
        • Rissanen A.
        • Kaprio J.
        • Mustonen J.
        Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation.
        Diabetes Care. 2011; 34: 1809-1815
        • Kaliannan K.
        • Wang B.
        • Li X.Y.
        • Kim K.J.
        • Kang J.X.
        A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia.
        Sci Rep. 2015; 5 (11276-11276)
        • Funk C.D.
        Prostaglandins and leukotrienes: advances in eicosanoid biology.
        Science. 2001; 294: 1871-1875
        • Chen Y.
        • Falck J.R.
        • Manthati V.L.
        • Jat J.L.
        • Campbell W.B.
        20-Iodo-14, 15-epoxyeicosa-8 (Z)-enoyl-3-azidophenylsulfonamide: photoaffinity labeling of a 14, 15-epoxyeicosatrienoic acid receptor.
        Biochemistry. 2011; 50: 3840-3848
        • Ding Y.
        • Frömel T.
        • Popp R.
        • Falck J.R.
        • Schunck W.-.H.
        • Fleming I.
        The biological actions of 11, 12-epoxyeicosatrienoic acid in endothelial cells are specific to the R/S-enantiomer and require the Gs protein.
        Journal of Pharmacology and Experimental Therapeutics. 2014; 350: 14-21
        • Park S.-.K.
        • Herrnreiter A.
        • Pfister S.L.
        • Gauthier K.M.
        • Falck B.A.
        • Falck J.R.
        • Campbell W.B.
        GPR40 is a low-affinity epoxyeicosatrienoic acid receptor in vascular cells.
        Journal of Biological Chemistry. 2018; 293: 10675-10691
        • Gauthier K.M.
        • Deeter C.
        • Krishna U.M.
        • Reddy Y.K.
        • Bondlela M.
        • Falck J.
        • Campbell W.B.
        14, 15-Epoxyeicosa-5 (Z)-enoic acid: a selective epoxyeicosatrienoic acid antagonist that inhibits endothelium-dependent hyperpolarization and relaxation in coronary arteries.
        Circ. Res. 2002; 90: 1028-1036
        • Panigrahy D.
        • Edin M.L.
        • Lee C.R.
        • Huang S.
        • Bielenberg D.R.
        • Butterfield C.E.
        • Barnés C.M.
        • Mammoto A.
        • Mammoto T.
        • Luria A.
        Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice.
        J. Clin. Invest. 2012; 122: 178-191
        • Arnold C.
        • Markovic M.
        • Blossey K.
        • Wallukat G.
        • Fischer R.
        • Dechend R.
        • Konkel A.
        • von Schacky C.
        • Luft F.C.
        • Muller D.N.
        Arachidonic acid-metabolizing cytochrome P450 enzymes are targets of ω-3 fatty acids.
        Journal of Biological Chemistry. 2010; 285: 32720-32733
        • Schunck W.H.
        • Konkel A.
        • Fischer R.
        • Weylandt K.H.
        Therapeutic potential of omega-3 fatty acid-derived epoxyeicosanoids in cardiovascular and inflammatory diseases.
        Pharmacol. Ther. 2018; 183: 177-204
        • Epple H.J.
        • Schneider T.
        • Troeger H.
        • Kunkel D.
        • Allers K.
        • Moos V.
        • Amasheh M.
        • Loddenkemper C.
        • Fromm M.
        • Zeitz M.
        • Schulzke J.D.
        Impairment of the intestinal barrier is evident in untreated but absent in suppressively treated HIV-infected patients.
        Gut. 2009; 58: 220-227
        • Dandekar S.
        • George M.D.
        • Baumler A.J.
        Th17 cells, HIV and the gut mucosal barrier.
        Curr Opin HIV AIDS. 2010; 5: 173-178
        • Deitch E.A.
        The Role of Intestinal Barrier Failure and Bacterial Translocation in the Development of Systemic Infection and Multiple Organ Failure.
        JAMA Surg. 1990; 125: 403-404
        • McNamara B.P.
        • Koutsouris A.
        • O'Connell C.B.
        • Nougayrede J.P.
        • Donnenberg M.S.
        • Hecht G.
        Translocated EspF protein from enteropathogenic Escherichia coli disrupts host intestinal barrier function.
        J Clin Invest. 2001; 107: 621-629
        • Antoni L.
        • Nuding S.
        • Wehkamp J.
        • Stange E.F.
        Intestinal barrier in inflammatory bowel disease.
        World J. Gastroenterol. 2014; 20: 1165-1179
        • Rera M.
        • Clark R.I.
        • Walker D.W.
        Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila.
        Proc Natl Acad Sci U S A. 2012; 109: 21528-21533
        • Opal S.M.
        • Scannon P.J.
        • Vincent J.L.
        • White M.
        • Carroll S.F.
        • Palardy J.E.
        • Parejo N.A.
        • Pribble J.P.
        • Lemke J.H.
        Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock.
        J Infect Dis. 1999; 180: 1584-1589
        • Kritselis I.
        • Tzanetakou V.
        • Adamis G.
        • Anthopoulos G.
        • Antoniadou E.
        • Bristianou M.
        • Kotanidou A.
        • Lignos M.
        • Polyzos K.
        • Retsas T.
        • Sassopoulou P.
        • Papaioannou A.I.
        • Sinapidis D.
        • Sereti K.
        • Vittoros V.
        • Ghanas P.
        • Gogos C.
        • Giamarellos-Bourboulis E.J.
        The level of endotoxemia in sepsis varies in relation to the underlying infection: impact on final outcome.
        Immunol Lett. 2013; 152: 167-172
        • Marshall J.C.
        Endotoxin in the Pathogenesis of Sepsis.
        Contrib Nephrol. 2010; 167: 1-13
        • Pussinen P.J.
        • Havulinna A.S.
        • Lehto M.
        • Sundvall J.
        • Salomaa V.
        Endotoxemia Is Associated With an Increased Risk of Incident Diabetes.
        Diabetes Care. 2011; 34: 392