Advertisement
Research Article| Volume 162, 102185, November 2020

Double lipoxygenation of polyunsaturated fatty acids of nutritional interest

Published:September 30, 2020DOI:https://doi.org/10.1016/j.plefa.2020.102185

      Highlights

      • PUFA with at least three methylene-interrupted double bonds may undergo a double lipoxygenation, leading to trans,cis,trans/E,Z,E conjugated trienes.
      • The reduced products are di-OH-E,Z,E which inhibit platelet cyclooxygenase (COX) activity and the aggregating effect of the PGH2/TxA2 COX products.
      • In addition to these platelet effects, the 10,17-di-OH-E,Z,E product from docosahexaenoic acid, called protectin DX, has been described active against diverse pathophysiological situations, such as influenza virus proliferation, insulin and glucose related metabolic diseases, and white cells involved in vascular disorders.

      Abstract

      Double lipoxygenation of polyunsaturated fatty acids having at least three methylene-interrupted double bonds can be made by two lipoxygenases, e.g. 5- and 12-LOX, or 15-LOX only, followed by reduction of the hydroperoxide products through the glutathione peroxidase action. Several biological activities have been reported for such a double 15-LOX product of docosahexaenoic acid, called protectin DX to differentiate it from protectin D1, a stereo and geometric isomer described for its potent anti-inflammatory potential. The geometric characteristic of the double lipoxygenase products is the conjugated triene E,Z,E (trans,cis,trans), which appears crucial in their biological activities. A focus is also done on single lipoxygenation of mono-hydroxylated products first made by aspirin-treated cyclooxygenase-2. The resulting (R,S)-diOH, E,Z,E conjugated trienes, instead of the (S,S)-diOH isomer in case of double lipoxygenation, seem to be even more active for some biological effects, making biologically relevant the single lipoxygenation in aspirin-treated situations.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hamberg M.
        Steric analysis of hydroperoxides formed by lipoxygenase oxygenation of linoleic acid.
        Anal. Biochem. 1971; 43: 515-526https://doi.org/10.1016/0003-2697(71)90282-x
        • Cowan J.C.
        • Rackis J.J.
        • Wolf W.J.
        Soybean protein flavor components: a review.
        J. Am. Oil Chem. Soc. 1973; 50: 426A-435Ahttps://doi.org/10.1007/bf02641826
        • Kuhn H.
        • Banthiya S.
        • van Leyen K.
        Mammalian lipoxygenases and their biological relevance.
        Biochim. Biophys. Acta. 1851; 2015 (Review): 308-330https://doi.org/10.1016/j.bbalip.2014.10.002
        • Lagarde M.
        • Véricel E.
        • Chabannes B.
        • Prigent A.F.
        Blood cell redox status and fatty acids. Prostaglandins leukot.
        Essent. Fatty Acids. 1995; 52 (Review): 159-161https://doi.org/10.1016/0952-3278(95)90015-2
        • Shimizu T.
        • Rådmark O.
        • Samuelsson B.
        Enzyme with dual lipoxygenase activities catalyzes leukotriene A4 synthesis from arachidonic acid.
        Proc. Natl. Acad. Sci. U S A. 1984; 81: 689-693https://doi.org/10.1073/pnas.81.3.689
        • Borgeat P.
        Biochemistry of the lipoxygenase pathways in neutrophils.
        Can. J. Physiol. Pharmacol. 1989; 67 (Review): 936-942https://doi.org/10.1139/y89-147
        • Maclouf J.
        • de Laclos B.F.
        • Borgeat P.
        Stimulation of leukotriene biosynthesis in human blood leukocytes by platelet-derived 12-hydroperoxy-icosatetraenoic acid.
        Proc. Natl. Acad. Sci. U S A. 1982; 79: 6042-6046https://doi.org/10.1073/pnas.79.19.6042
        • Croset M.
        • Lagarde M.
        Stereospecific inhibition of PGH2-induced platelet aggregation by lipoxygenase products of icosaenoic acids.
        Biochem. Biophys. Res. Commun. 1983; 112: 878-883https://doi.org/10.1016/0006-291x(83)91699-6
        • Maas R.L.
        • Turk J.
        • Oates J.A.
        • Brash A.R.
        Formation of a novel dihydroxy acid from arachidonic acid by lipoxygenase-catalyzed double oxygenation in rat mononuclear cells and human leukocytes.
        J. Biol. Chem. 1982; 257 (PMID: 6806263): 7056-7067
        • Butovich I.A.
        A one-step method of 10,17-dihydro(pero)xydocosahexa-4Z,7Z,11E,13Z,15E,19Z-enoic acid synthesis by soybean lipoxygenase.
        J. Lipid Res. 2006; 47: 854-863https://doi.org/10.1194/jlr.D500042-JLR200
        • Serhan C.N.
        • Dalli J.
        • Colas R.A.
        • Winkler J.W.
        • Chiang N.
        Protectins and maresins: new pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome.
        Biochim. Biophys. Acta. 2015; 1851 (Review): 397-413https://doi.org/10.1016/j.bbalip.2014.08.006
        • Bazan N.G.
        • Molina M.F.
        • Gordon W.C.
        Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases.
        Annu. Rev. Nutr. 2011; 31: 321-351https://doi.org/10.1146/annurev.nutr.012809.104635
        • Serhan C.N.
        • Yang R.
        • Martinod K.
        • Kasuga K.
        • Pillai P.S.
        • Porter T.F.
        • Oh S.F.
        • Spite M.
        Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions.
        J. Exp. Med. 2009; 206: 15-23https://doi.org/10.1084/jem.20081880
        • Chen P.
        • Fenet B.
        • Michaud S.
        • Tomczyk N.
        • Véricel E.
        • Lagarde M.
        • Guichardant M.
        Full characterization of PDX, a neuroprotectin/protectin D1 isomer, which inhibits blood platelet aggregation.
        FEBS Lett. 2009; 583: 3478-3484https://doi.org/10.1016/j.febslet.2009.10.004
        • Chen P.
        • Véricel E.
        • Lagarde M.
        • Guichardant M.
        Poxytrins, a class of oxygenated products from polyunsaturated fatty acids.
        Potently Inhibit. Blood Platelet Aggreg. FASEB J. 2011; 25: 382-388https://doi.org/10.1096/fj.10-161836
        • Liu M.
        • Chen P.
        • Véricel E.
        • Lelli M.
        • Béguin L.
        • Lagarde M.
        • Guichardant M.
        Characterization and biological effects of Di-Hydroxylated compounds deriving from the lipoxygenation of ALA.
        J. Lipid Res. 2013; 54: 2083-2094https://doi.org/10.1194/jlr.M035139
        • Lagarde M.
        • Boutillon M.M.
        • Guichardant M.
        • Lellouche J.P.
        • Beaucourt J.P.
        • Vanhove A.
        • Grée R.
        Further studies on the anti-thromboxane A2 activity of monohydroxylated fatty acids.
        Biochem. Pharmacol. 1989; 38: 1863-1864https://doi.org/10.1016/0006-2952(89)90422-x
        • Schneider C.
        • Brash A.R.
        Stereospecificity of hydrogen abstraction in the conversion of arachidonic acid to 15R-HETE by aspirin-treated cyclooxygenase-2. Implications for the alignment of substrate in the active site.
        J. Biol. Chem. 2000; 275: 4743-4746https://doi.org/10.1074/jbc.275.7.4743
        • Rowlinson S.W.
        • Crews B.C.
        • Goodwin D.C.
        • Schneider C.
        • Gierse J.K.
        • Marnett L.J.
        Spatial requirements for 15-(R)-hydroxy-5Z,8Z,11Z, 13E-eicosatetraenoic acid synthesis within the cyclooxygenase active site of murine COX-2. Why acetylated COX-1 does not synthesize 15-(R)-HETE.
        J. Biol. Chem. 2000; 275: 6586-6591https://doi.org/10.1074/jbc.275.9.6586
        • Morita M.
        • Kuba K.
        • Ichikawa A.
        • Nakayama M.
        • Katahira J.
        • Iwamoto R.
        • Watanebe T.
        • Sakabe S.
        • Daidoji T.
        • Nakamura S.
        • Kadowaki A.
        • Ohto T.
        • Nakanishi H.
        • Taguchi R.
        • Nakaya T.
        • Murakami M.
        • Yoneda Y.
        • Arai H.
        • Kawaoka Y.
        • Penninger J.M.
        • Arita M.
        • Imai Y.
        The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza.
        Cell. 2013; 153: 112-125https://doi.org/10.1016/j.cell.2013.02.027
        • Imai Y.
        Role of omega-3 PUFA-derived mediators, the protectins, in influenza virus infection.
        Biochim. Biophys. Acta. 2015; 1851 (Review): 496-502https://doi.org/10.1016/j.bbalip.2015.01.006
        • White P.J.
        • St-Pierre P.
        • Charbonneau A.
        • Mitchell P.L.
        • St-Amand E.
        • Marcotte B.
        • Marette A.
        Protectin DX alleviates insulin resistance by activating a myokine-liver glucoregulatory axis.
        Nat. Med. 2014; 20: 664-669https://doi.org/10.1038/nm.3549
        • Jung T.W.
        • Kim H.-.C.
        • El-Aty A.M.A.
        • Jeong J.H.
        Protectin DX suppresses hepatic gluconeogenesis through AMPK-HO-1-mediated inhibition of ER stress.
        Cell Signal. 2017; 34: 133-140https://doi.org/10.1016/j.cellsig.2017.03.013
        • Liu M.
        • Boussetta T.
        • Makni-Maalej K.
        • Fay M.
        • Driss F.
        • El-Benna J.
        • Lagarde M.
        • Guichardant M.
        • Protectin D.X.
        A double lipoxygenase product of DHA, inhibits both ROS production in human neutrophils and cyclooxygenase activities.
        Lipids. 2014; 49: 49-57https://doi.org/10.1007/s11745-013-3863-6
        • Stein K.
        • Stoffels M.
        • Lysson M.
        • Schneiker B.
        • Dewald O.
        • Krönke G.
        • Kalff J.C.
        • Wehner S.
        A Role for 12/15-lipoxygenase-derived proresolving mediators in postoperative ileus: protectin DX-regulated neutrophil extravasation.
        J. Leukoc. Biol. 2016; 99: 231-239https://doi.org/10.1189/jlb.3HI0515-189R
        • Xia H.
        • Chen L.
        • Liu H.
        • Sun Z.
        • Yang W.
        • Yang Y.
        • Cui S.
        • Li S.
        • Wang Y.
        • Song L.
        • Abdelgawad A.F.
        • Shang Y.
        • Yao S.
        Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype.
        Sci. Rep. 2017; 7: 99https://doi.org/10.1038/s41598-017-00103-0
        • Hwang H.-.J.
        • Jung T.W.
        • Kim J.W.
        • Kim J.A.
        • Lee Y.B.
        • Hong S.H.
        • Roh E.
        • Choi K.M.
        • Baik S.H.
        • Yoo H.J.
        Protectin dx prevents H 2 O 2-mediated oxidative stress in vascular endothelial cells via an AMPK-dependent Mechanism.
        Cell Signal. 2019; 53: 14-21https://doi.org/10.1016/j.cellsig.2018.09.011
        • Jung T.W.
        • Ahn S.H.
        • Shin J.W.
        • Kim H.-.C.
        • Park E.S.
        • El-Aty A.M.A.
        • Hacımüftüoğlu A.
        • Song K.H.
        • Jeong J.H.
        Protectin DX ameliorates palmitate-induced hepatic insulin resistance through AMPK/SIRT1-mediated modulation of fetuin-A and SeP expression.
        Clin. Exp. Pharmacol. Physiol. 2019; 46: 898-909https://doi.org/10.1111/1440-1681.13131
        • Jouvène C.
        • Fourmaux B.
        • Géloën A.
        • Balas L.
        • Durand T.
        • Lagarde M.
        • Létisse M.
        • Guichardant M.
        Ultra-performance liquid chromatography-mass spectrometry analysis of free and esterified oxygenated derivatives from docosahexaenoic acid in rat brain.
        Lipids. 2018; 53: 103-116https://doi.org/10.1002/lipid.12006
        • Bryant R.W.
        • Schewe T.
        • Rapoport S.M.
        • Bailey M.
        Leulotriene formation by a purified reticulocyte lipoxygenase enzyme. Conversion of arachidonic acid and 15-hydroperoxyeicosatetraenoic acid to 14,15-leukotriene A4.
        J. Biol. Chem. 1985; 260 (PMID: 2982864): 3548-3555
        • Hachem M.
        • Géloën A.
        • Lo Van A.
        • Foumaux B.
        • Fenart L.
        • Gosselet F.
        • Da Silva P.
        • Breton G.
        • Lagarde M.
        • Picq M.
        • Bernoud-Hubac N.
        Efficient docosahexaenoic acid uptake by the brain from a structured phospholipid.
        Mol. Neurobiol. 2016; 53: 3205-3215https://doi.org/10.1007/s12035-015-9228-9
        • Thies F.
        • Pillon C.
        • Moliere P.
        • Lagarde M.
        • Lecerf J.
        Preferential incorporation of sn-2 lysoPC DHA over unesterified DHA in the young rat brain.
        Am. J. Physiol. 1994; 267: R1273-R1279https://doi.org/10.1152/ajpregu.1994.267.5.R1273
        • Nguyen L.N.
        • Ma D.
        • Shui G.
        • Wong P.
        • Cazenave-Gassiot A.
        • Zhang X.
        • Wenk M.R.
        • Goh E.L.K.
        • Silver D.L.
        Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid.
        Nature. 2014; 509: 503-506https://doi.org/10.1038/nature13241
        • Lo Van A.
        • Fourmaux B.
        • Picq M.
        • Guichardant M.
        • Lagarde M.
        • Bernoud-Hubac N.
        Synthesis and identification of AceDoxyPC, a protectin-containing structured phospholipid, using liquid chromatography/mass spectrometry.
        Lipids. 2017; 52: 751-761https://doi.org/10.1007/s11745-017-4280-z