Advertisement
Original research article| Volume 176, 102376, January 2022

Download started.

Ok

Omega-3 index is directly associated with a healthy red blood cell distribution width

  • Michael I. McBurney
    Correspondence
    Corresponding author: Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
    Affiliations
    Fatty Acid Research Institute, Sioux Falls, SD 57106, United States of America

    Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada

    Division of Biochemical and Molecular Biology, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, United States of America
    Search for articles by this author
  • Nathan L. Tintle
    Affiliations
    Fatty Acid Research Institute, Sioux Falls, SD 57106, United States of America

    Department of Population Health Nursing Science, College of Nursing, University of Illinois – Chicago, Chicago, IL 60612, United States of America
    Search for articles by this author
  • William S. Harris
    Affiliations
    Fatty Acid Research Institute, Sioux Falls, SD 57106, United States of America

    Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, United States of America
    Search for articles by this author
Published:November 22, 2021DOI:https://doi.org/10.1016/j.plefa.2021.102376

      Abstract

      Low red blood cell (RBC) membrane content of EPA and DHA, i.e., the omega-3 index (O3I), and elevated RBC distribution width (RDW) are risk factors for all-cause mortality. O3I and RDW are related with membrane fluidity and deformability. Our objective was to determine if there is a relationship between O3I and RDW in healthy adults. Subjects without inflammation or anemia, and with values for O3I, RDW, high-sensitivity C-reactive protein (CRP), body mass index (BMI), age and sex were identified (n = 25,485) from a clinical laboratory dataset of  > 45,000 individuals. RDW was inversely associated with O3I in both sexes before and after (both p < 0.00001) adjusting models for sex, age, BMI and CRP. Stratification by sex revealed a sex-O3I interaction with the RDW-O3I slope (p < 0.00066) being especially steep in females with O3I ≤ 5.6%. In healthy adults of both sexes, the data suggested that an O3I of > 5.6% may help maintain normal RBC structural and functional integrity.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bessman J.D.
        • Gilmer P.R.
        • Gardner F.H.
        Improved classification of anemias by MCV and RDW.
        Am. J. Clin. Pathol. 1983; 80: 322-326https://doi.org/10.1093/ajcp/80.3.322
        • Patel K.V.
        • Mohanty J.G.
        • Kanapuru B.
        • Hesdorffer C.
        • Ershler W.B.
        • Rifkind J.M.
        Association of the Red Cell Distribution Width with Red Blood Cell Deformability.
        in: Welch W.J. Palm F. Bruley D.F. Harrison D.K. Oxygen Transport to Tissue XXXIV. Springer New York, New York, NY2013: 211-216https://doi.org/10.1007/978-1-4614-4989-8_29
        • Schweiger D.J.
        Red cell distribution width in sickle cell anemia.
        Am. J. Med. Technol. 1981; 47: 231-233
        • Wallerstein R.O.
        Laboratory evaluation of anemia.
        West J. Med. 1987; 146: 443-451
        • Thompson W.G.
        • Meola T.
        • Lipkin M.
        • Freedman M.L.
        Red cell distribution width, mean corpuscular volume, and transferrin saturation in the diagnosis of iron deficiency.
        JAMA Intern. Med. 1988; 148: 2128-2130
        • Tonelli M.
        • Sacks F.
        • Arnold M.
        • Moye L.
        • Davis B.
        • Pfeffer M.
        Relation between red blood cell distribution width and cardiovascular event rate in people with coronary disease.
        Circulation. 2008; 117: 163-168https://doi.org/10.1161/CIRCULATIONAHA.107.727545
        • Zalawadiya S.K.
        • Veeranna V.
        • Panaich S.S.
        • Afonso L.
        • Ghali J.K.
        Gender and ethnic differences in red cell distribution width and its association with mortality among low risk healthy united state adults.
        Am. J. Cardiol. 2012; 109: 1664-1670https://doi.org/10.1016/j.amjcard.2012.01.396
        • Makhoul B.F.
        • Khourieh A.
        • Kaplan M.
        • Bahouth F.
        • Aronson D.
        • Azzam Z.S.
        Relation between changes in red cell distribution width and clinical outcomes in acute decompensated heart failure.
        Int. J. Cardiol. 2013; 167: 1412-1416https://doi.org/10.1016/j.ijcard.2012.04.065
        • Li N.
        • Zhou H.
        • Tang Q.
        Red blood cell distribution width: a novel predictive indicator for cardiovascular and cerebrovascular diseases.
        Dis. Markers. 2017; 2017: 1-23https://doi.org/10.1155/2017/7089493
        • Shah N.
        • Pahuja M.
        • Pant S.
        • Handa A.
        • Agarwal V.
        • Patel N.
        • Dusaj R.
        Red cell distribution width and risk of cardiovascular mortality: insights from National Health and Nutrition Examination Survey (NHANES)-III.
        Int. J. Cardiol. 2017; 232: 105-110https://doi.org/10.1016/j.ijcard.2017.01.045
        • Huang S.
        • Zhou Q.
        • Guo N.
        • Zhang Z.
        • Luo L.
        • Luo Y.
        • Qin Z.
        • Ge L.
        Association between red blood cell distribution width and in-hospital mortality in acute myocardial infarction.
        Medicine (Baltimore). 2021; 100: e25404https://doi.org/10.1097/MD.0000000000025404
        • Lazzeroni D.
        • Moderato L.
        • Marazzi P.L.
        • Pellegrino C.
        • Musiari E.
        • Castiglioni P.
        • Camaiora U.
        • Bini M.
        • Geroldi S.
        • Brambilla L.
        • Brambilla V.
        • Coruzzi P.
        Red blood cell distribution width as a novel prognostic marker after myocardial revascularization or cardiac valve surgery.
        Sci. Rep. 2021; 11: 7889https://doi.org/10.1038/s41598-021-87075-4
        • Foy B.H.
        • Carlson J.C.T.
        • Reinertsen E.
        • Padros I. Valls R.
        • Pallares Lopez R.
        • Palanques-Tost E.
        • Mow C.
        • Westover M.B.
        • Aguirre A.D.
        • Higgins J.M.
        Association of red blood cell distribution width with mortality risk in hospitalized adults with SARS-CoV-2 infection.
        JAMA Network Open. 2020; 3e2022058https://doi.org/10.1001/jamanetworkopen.2020.22058
        • Rapp J.L.
        • Tremblay D.
        • Alpert N.
        • Lieberman-Cribbin W.
        • Mascarenhas J.
        • Taioli E.
        • Ghaffari S.
        Red cell distribution width is associated with mortality in non-anemic patients with COVID-19.
        J. Med. Virol. 2021; (jmv.27011)https://doi.org/10.1002/jmv.27011
        • Wang Z.
        • Lin Y.-.W.
        • Wei X.
        • Li F.
        • Liao X.-.L.
        • Yuan H.
        • Huang D.
        • Qin T.
        • Geng H.
        • Wang S.
        Predictive value of prognostic nutritional index on COVID-19 severity.
        Front. Nutr. 2021; 7582736https://doi.org/10.3389/fnut.2020.582736
        • Dalbaşı E.
        • Akgül Ö.L.
        Are average platelet volume, red cell distribution width and platelet distribution width guiding markers for acute appendicitis treatment options?.
        Int. J. Clin. Pract. 2021; https://doi.org/10.1111/ijcp.14232
        • Li Y.
        • She Y.
        • Fu L.
        • Zhou R.
        • Xiang W.
        • Luo L.
        Association between red cell distribution width and hospital mortality in patients with sepsis.
        J. Int. Med. Res. 2021; 49030006052110042https://doi.org/10.1177/03000605211004221
        • Go H.
        • Ohto H.
        • Nollet K.E.
        • Sato K.
        • Ichikawa H.
        • Kume Y.
        • Kanai Y.
        • Maeda H.
        • Kashiwabara N.
        • Ogasawara K.
        • Sato M.
        • Hashimoto K.
        • Hosoya M.
        Red cell distribution width as a predictor for bronchopulmonary dysplasia in premature infants.
        Sci. Rep. 2021; 11: 7221https://doi.org/10.1038/s41598-021-86752-8
        • Koma Y.
        • Onishi A.
        • Matsuoka H.
        • Oda N.
        • Yokota N.
        • Matsumoto Y.
        • Koyama M.
        • Okada N.
        • Nakashima N.
        • Masuya D.
        • Yoshimatsu H.
        • Suzuki Y.
        Increased red blood cell distribution width associates with cancer stage and prognosis in patients with lung cancer.
        PLoS ONE. 2013; 8: e80240https://doi.org/10.1371/journal.pone.0080240
        • Chen Q.
        • Mao R.
        • Zhao J.
        • Bi X.
        • Li Z.
        • Huang Z.
        • Zhang Y.
        • Zhou J.
        • Zhao H.
        • Cai J.
        Nomograms incorporating preoperative RDW level for the prediction of postoperative complications and survival in colorectal liver metastases after resection.
        Ann. Palliat. Med. 2021; 10: 4143-4158https://doi.org/10.21037/apm-20-2418
        • Dingjan T.
        • Futerman A.H.
        The fine-tuning of cell membrane lipid bilayers accentuates their compositional complexity.
        BioEssays. 2021; : 1-15https://doi.org/10.1002/bies.202100021
        • Harris W.S.
        • von Schacky C.
        The Omega-3 Index: a new risk factor for death from coronary heart disease?.
        Prev. Med. 2004; 39: 212-220https://doi.org/10.1016/j.ypmed.2004.02.030
        • Vidgren H.M.
        • Agren J.J.
        • Schwab U.
        • Rissanen T.
        • Hänninen O.
        • Uusitupa M.I.
        Incorporation of n-3 fatty acids into plasma lipid fractions, and erythrocyte membranes and platelets during dietary supplementation with fish, fish oil, and docosahexaenoic acid-rich oil among healthy young men.
        Lipids. 1997; 32: 697-705
        • Flock M.R.
        • Skulas-Ray A.C.
        • Harris W.S.
        • Etherton T.D.
        • Fleming J.A.
        • Kris-Etherton P.M.
        Determinants of erythrocyte omega-3 fatty acid content in response to fish oil supplementation: a dose–response randomized controlled trial.
        J. Am. Heart Assoc. 2013; 2e000513https://doi.org/10.1161/JAHA.113.000513
        • Terano T.
        • Hirai A.
        • Hamazaki T.
        • Kobayashi S.
        • Fujita T.
        • Tamura Y.
        • Kumagai A.
        Effect of oral administration of highly purified eicosapentaenoic acid on platelet function, blood viscosity and red cell deformability in healthy human subjects.
        Atherosclerosis. 1983; 46: 321-331
        • Cartwright I.J.
        • Pockley A.G.
        • Galloway J.H.
        • Greaves M.
        • Preston F.E.
        The effects of dietary omega-3 polyunsaturated fatty acids on erythrocyte membrane phospholipids, erythrocyte deformabilit and blood viscosity in healthy volunteers.
        Atherosclerosis. 1985; 55: 267-281
        • Bach R.
        • Schmidt U.
        • Jung F.
        • Kiesewetter H.
        • Hennen B.
        • Wenzel E.
        • Schieffer H.
        • Bette L.
        • Heyden S.
        Effects of fish oil capsules in two dosages on blood pressure, platelet functions, haemorheological and clinical chemistry parameters in apparently healthy subjects.
        Ann. Nutr. Metab. 1989; 33: 359-367https://doi.org/10.1159/000177559
        • Hessel E.
        • Agren J.J.
        • Paulitschke M.
        • Hanninen O.
        • Hanninen A.
        • Lerche D.
        Freshwater fish diet affects lipid composition, deformability and aggregation properties of erythrocytes.
        Atherosclerosis. 1990; 82: 37-42
        • Walker R.E.
        • Jackson K.H.
        • Tintle N.L.
        • Shearer G.C.
        • Bernasconi A.
        • Masson S.
        • Latini R.
        • Heydari B.
        • Kwong R.Y.
        • Flock M.
        • Kris-Etherton P.M.
        • Hedengran A.
        • Carney R.M.
        • Skulas-Ray A.
        • Gidding S.S.
        • Dewell A.
        • Gardner C.D.
        • Grenon S.M.
        • Sarter B.
        • Newman J.W.
        • Pedersen T.L.
        • Larson M.K.
        • Harris W.S.
        Predicting the effects of supplemental EPA and DHA on the omega-3 index.
        Am. J. Clin. Nutr. 2019; 110: 1034-1040https://doi.org/10.1093/ajcn/nqz161
        • Harris W.S.
        • Tintle N.L.
        • Imamura F.
        • Qian F.
        • Ardisson Korat A.V.
        • Marklund M.
        • Djoussé L.
        • Bassett J.K.
        • Carmichael P.-.H.
        • Chen Y.-.Y.
        • Hirakawa Y.
        • Kupers L.K.
        • Lankinen M.
        • Murphy R.A.
        • Samieri C.
        • Senn M.K.
        • Shi P.
        • Virtanen J.K.
        • Brouwer I.A.
        • Chien K.-.L.
        • Eiriksdottir G.
        • Forouhi N.G.
        • Geleijnse J.M.
        • Giles G.G.
        • Gudnason V.
        • Helmer C.
        • Hodge A.
        • Jackson R.
        • Khaw K.-.T.
        • Laakso M.
        • Lai H.
        • Laurin D.
        • Lindsay J.
        • Micha R.
        • Mursu J.
        • Ninomiya T.
        • Post W.
        • Psaty B.M.
        • Riserus U.
        • Robinson J.G.
        • Shadyab A.H.
        • Snetselaar L.
        • Sala-Vila A.
        • Sun Y.
        • Steffen L.M.
        • Tsai M.Y.
        • Wareham N.J.
        • Wood A.C.
        • Wu J.H.Y.
        • Hu F.
        • Sun Q.
        • Siscovick D.S.
        • Lemaitre R.N.
        • Mozaffarian D.
        F. The Fatty acids and outcomes research consortium, blood n-3 fatty acid levels and total and cause-specific mortality from 17 prospective studies.
        Nat. Commun. 2021; 12: 1-9https://doi.org/10.1038/s41467-021-22370-2
        • Fava C.
        • Cattazzo F.
        • Hu Z.-.D.
        • Lippi G.
        • Montagnana M.
        The role of red blood cell distribution width (RDW) in cardiovascular risk assessment: useful or hype?.
        Ann. Transl. Med. 2019; 7 (581–581)https://doi.org/10.21037/atm.2019.09.58
        • Moriarty P.M.
        • Steg P.G.
        • Gorby L.K.
        • Zeiher A.M.
        • White H.D.
        • Sourdille T.
        • Roe M.T.
        • Louie M.J.
        • Jukema J.W.
        • Harrington R.A.
        • Goodman S.G.
        • Diaz R.
        • Bittner V.A.
        • Bhatt D.L.
        • Szarek M.
        • Li Q.H.
        • Schwartz G.G.
        Relation of red blood cell distribution width to risk of major adverse cardiovascular events, death, and effect of alirocumab after acute coronary syndrome.
        American Heart Association. American Heart Association, Phildadelphia, PA2019: 1
        • Lappegård J.
        • Ellingsen T.
        • Hindberg K.
        • Mathiesen E.
        • Njølstad I.
        • Wilsgaard T.
        • Løchen M.-.L.
        • Brækkan S.
        • Hansen J.-.B.
        Impact of Chronic Inflammation, Assessed by hs-CRP, on the Association between Red Cell Distribution Width and Arterial Cardiovascular Disease: the Tromsø Study.
        TH Open. 2018; 02: e182-e189https://doi.org/10.1055/s-0038-1651523
        • Zimmerman M.A.
        Diagnostic implications of C-reactive protein.
        Arch. Surg. 2003; 138: 220https://doi.org/10.1001/archsurg.138.2.220
        • Villaseñor A.
        • Flatt S.W.
        • Marinac C.
        • Natarajan L.
        • Pierce J.P.
        • Patterson R.E.
        Postdiagnosis C-reactive protein and breast cancer survivorship: findings from the WHEL study.
        Cancer Epidemiol Biomarkers Prev. 2014; 23: 189-199https://doi.org/10.1158/1055-9965.EPI-13-0852
        • WHO
        C-reactive Protein Concentrations As a Marker of Inflammation Or Infection For Interpreting Biomarkers of Micronutrient Status.
        World Health Organization, Geneva, Switzerland2014
        • Knight M.L.
        The application of high-sensitivity C-reactive protein in clinical practice: a 2015 update.
        US Pharmacist. 2015; 40: 50-53
      1. S. Jafarnejad, V. Boccardi, B. Hosseini, M. Taghizadeh, Z. Hamedifard, A meta-analysis of randomized control trials: the impact of vitamin C Supplementation on serum CRP and serum hs-CRP concentrations, (2018). https://doi.org/10.2174/1381612824666181017101810.

        • Evans T.C.
        • Jehle D.
        The red blood cell distribution width.
        J. Emerg. Med. 1991; 9: 71-74https://doi.org/10.1016/0736-4679(91)90592-4
        • Cappellini M.D.
        • Motta I.
        Anemia in clinical practice—definition and classification: does hemoglobin change with aging?.
        Sem. Hematol. 2015; 52: 261-269https://doi.org/10.1053/j.seminhematol.2015.07.006
        • Dayspring T.D.
        • Varvel S.A.
        • Ghaedi L.
        • Thiselton D.L.
        • Bruton J.
        • McConnell J.P.
        Biomarkers of cholesterol homeostasis in a clinical laboratory database sample comprising 667,718 patients.
        J. Clin. Lipidol. 2015; 9: 807-816https://doi.org/10.1016/j.jacl.2015.08.003
        • Harris W.S.
        • Pottala J.V.
        • Vasan R.S.
        • Larson M.G.
        • Robins S.J.
        Changes in erythrocyte membrane trans and marine fatty acids between 1999 and 2006 in older Americans.
        J. Nutr. 2012; 142: 1297-1303https://doi.org/10.3945/jn.112.158295
        • Nemkov T.
        • Reisz J.A.
        • Xia Y.
        • Zimring J.C.
        • D'Alessandro A.
        Red blood cells as an organ? How deep omics characterization of the most abundant cell in the human body highlights other systemic metabolic functions beyond oxygen transport.
        Expert Rev. Proteomics. 2018; 15: 855-864https://doi.org/10.1080/14789450.2018.1531710
        • Huisjes R.
        • Bogdanova A.
        • van Solinge W.W.
        • Schiffelers R.M.
        • Kaestner L.
        • van Wijk R.
        Squeezing for life – properties of red blood cell deformability.
        Front. Physiol. 2018; 9: 656https://doi.org/10.3389/fphys.2018.00656
        • Else P.L.
        • Hulbert A.J.
        Membranes as metabolic pacemakers.
        Clin. Exp. Pharmacol. Physiol. 2003; 30: 559-564https://doi.org/10.1046/j.1440-1681.2003.03883.x
        • Witte T.R.
        • Salazar A.J.
        • Ballester O.F.
        • Hardman W.E.
        RBC and WBC fatty acid composition following consumption of an omega 3 supplement: lessons for future clinical trials.
        Lipids Health Dis. 2010; 9: 31https://doi.org/10.1186/1476-511X-9-31
        • Radzikowska U.
        • Rinaldi A.O.
        • Çelebi Sözener Z.
        • Karaguzel D.
        • Wojcik M.
        • Cypryk K.
        • Akdis M.
        • Akdis C.A.
        • Sokolowska M.
        The influence of dietary fatty acids on immune responses.
        Nutrients. 2019; 11: 2990https://doi.org/10.3390/nu11122990
        • Kamada T.
        • Yamashita T.
        • Baba Y.
        • Kai M.
        • Setoyama S.
        • Chuman Y.
        • Otsuji S.
        Dietary Sardine Oil Increases Erythrocyte Membrane Fluidity in Diabetic Patients.
        Diabetes. 1986; 35: 604-611
        • Turk H.F.
        • Chapkin R.S.
        Membrane lipid raft organization is uniquely modified by n-3 polyunsaturated fatty acids.
        PLEFA. 2013; 88: 43-47
        • Gawrisch K.
        • Eldho N.V.
        • Holte L.L.
        The structure of DHA in phospholipid membranes.
        Lipids. 2003; 38: 445-452
        • Tajima E.
        • Abe S.
        • Watanabe R.
        • Koyabu Y.
        • Saito F.
        • Kaneda H.
        • Sakuma M.
        • Toyoda S.
        • Inoue T.
        Effects of purified eicosapentaenoic acid on red blood cell distribution width and vascular endothelial function in patients with coronary artery disease.
        Vasc Fail. 2017; 1: 15-21https://doi.org/10.30548/vascfail.1.1_15
        • Kim J.
        • Lee H.
        • Shin S.
        Advances in the measurement of red blood cell deformability: a brief review.
        J. Cell Biotechnol. 2015; 1: 63-79https://doi.org/10.3233/JCB-15007
        • Salvagno G.L.
        • Sanchis-Gomar F.
        • Picanza A.
        • Lippi G.
        Red blood cell distribution width: a simple parameter with multiple clinical applications.
        Crit. Rev. Clin. Lab. Sci. 2015; 52: 86-105https://doi.org/10.3109/10408363.2014.992064
        • Liguori I.
        • Russo G.
        • Curcio F.
        • Bulli G.
        • Aran L.
        • Della-Morte D.
        • Gargiulo G.
        • Testa G.
        • Cacciatore F.
        • Bonaduce D.
        • Abete P.
        Oxidative stress, aging, and diseases.
        Clin. Intervent. Aging. Volume. 2018; 13: 757-772https://doi.org/10.2147/CIA.S158513
        • Minetti M.
        • Agati L.
        • Malorni W.
        The microenvironment can shift erythrocytes from a friendly to a harmful behavior: pathogenetic implications for vascular diseases.
        Cardiovasc. Res. 2007; 75: 21-28https://doi.org/10.1016/j.cardiores.2007.03.007
        • Heshmati J.
        • Morvaridzadeh M.
        • Maroufizadeh S.
        • Akbari A.
        • Yavari M.
        • Amirinejad A.
        • Maleki-Hajiagha A.
        • Sepidarkish M.
        Omega-3 fatty acids supplementation and oxidative stress parameters: a systematic review and meta-analysis of clinical trials.
        Pharmacol. Res. 2019; 149104462https://doi.org/10.1016/j.phrs.2019.104462
        • Ranka S.
        • Lahan S.
        • Dalia T.
        • Tripathi A.
        • Goyal A.
        • Sreenivasan J.
        • Taduru S.
        • Muhammed M.
        • Moriarty P.
        Association between red cell distribution width and cardiovascular outcomes – systematic review and meta-analysis.
        MRAJ. 2021; 9https://doi.org/10.18103/mra.v9i7.2468
        • Calder P.C.
        Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance.
        Bioch. Biophys. Acta: Mol Cell Biol Lipids. 2015; 1851: 469-484https://doi.org/10.1016/j.bbalip.2014.08.010
        • Calder P.C.
        Eicosapentaenoic and docosahexaenoic acid derived specialised pro-resolving mediators: concentrations in humans and the effects of age, sex, disease and increased omega-3 fatty acid intake.
        Biochimie. 2020; 178: 105-123https://doi.org/10.1016/j.biochi.2020.08.015
        • Fontes J.D.
        • Rahman F.
        • Lacey S.
        • Larson M.G.
        • Vasan R.S.
        • Benjamin E.J.
        • Harris W.S.
        • Robins S.J.
        Red blood cell fatty acids and biomarkers of inflammation: a cross-sectional study in a community-based cohort.
        Atherosclerosis. 2015; 240: 431-436https://doi.org/10.1016/j.atherosclerosis.2015.03.043
        • Li K.
        • Huang T.
        • Zheng J.
        • Wu K.
        • Li D.
        Effect of marine-derived n-3 polyunsaturated fatty acids on C-Reactive Protein, interleukin 6 and tumor necrosis factor α: a meta-analysis.
        PLoS ONE. 2014; 9: e88103https://doi.org/10.1371/journal.pone.0088103
      2. US Dept Health & Human Services, Nutrient Assessment for DRI Review, Nutient Assessment for DRI Review. (2014). https://health.gov/our-work/food-nutrition/dietary-reference-intakes-dris/nutrient-assessment-dri-review (accessed October 20, 2020).

        • McBurney M.I.
        • Blumberg J.B.
        • Costello R.B.
        • Eggersdorfer M.
        • Jr J.W.E.
        • Harris W.S.
        • Johnson E.J.
        • Mitmesser S.H.
        • Post R.C.
        • Rai D.
        • Schurgers L.J.
        Beyond Nutrient Deficiency—Opportunities to Improve Nutritional Status and Promote Health Modernizing DRIs and Supplementation Recommendations.
        Nutrients. 2021; 13: 1-25https://doi.org/10.3390/nu13061844
        • Kris-Etherton P.M.
        • Grieger J.A.
        • Etherton T.D.
        Dietary reference intakes for DHA and EPA.
        PLEFA. 2009; 81: 99-104https://doi.org/10.1016/j.plefa.2009.05.011
        • Harris W.S.
        • Mozaffarian D.
        • Lefevre M.
        • Toner C.D.
        • Colombo J.
        • Cunnane S.C.
        • Holden J.M.
        • Klurfeld D.M.
        • Morris M.C.
        • Whelan J.
        Towards establishing dietary reference intakes for eicosapentaenoic and docosahexaenoic acids.
        J. Nutr. 2009; 139: 804S-819Shttps://doi.org/10.3945/jn.108.101329
        • Daak A.
        • Rabinowicz A.
        • Ghebremeskel K.
        Omega-3 fatty acids are a potential therapy for patients with sickle cell disease.
        Nat. Rev. Dis. Primers. 2018; 4: 15https://doi.org/10.1038/s41572-018-0012-9
        • Daak A.A.
        • Lopez-Toledano M.A.
        • Heeney M.M.
        Biochemical and therapeutic effects of Omega-3 fatty acids in sickle cell disease.
        Complement. Therap. Med. 2020; 52102482https://doi.org/10.1016/j.ctim.2020.102482
        • Takahashi M.
        • Myojo M.
        • Watanabe A.
        • Kiyosue A.
        • Kimura K.
        • Ando J.
        • Hirata Y.
        • Komuro I.
        Effect of purified eicosapentaenoic acid on red cell distribution width in patients with ischemic heart disease.
        Heart Vessels. 2015; 30: 587-594https://doi.org/10.1007/s00380-014-0526-3
        • Meital L.T.
        • Windsor M.T.
        • Ramirez Jewell R.M.L.
        • Young P.
        • Schulze K.
        • Magee R.
        • O'Donnell J.
        • Jha P.
        • Perissiou M.
        • Golledge J.
        • Bailey T.G.
        • Brooks P.
        • Askew C.D.
        • Russell F.D.
        n-3 PUFAs improve erythrocyte fatty acid profile in patients with small AAA: a randomized controlled trial.
        J. Lipid Res. 2019; 60: 1154-1163https://doi.org/10.1194/jlr.P093013
        • Wolin E.
        • White J.
        • Pottala J.V.
        • Sasinowski M.
        • Dall T.
        • Dayspring T.D.
        • McConnell J.P.
        • Hoefner D.M.
        • Varvel S.A.
        • Thiselton D.L.
        • Warnick G.R.
        • Harris W.S.
        Comparison of cardiometabolic risk biomarkers from a national clinical laboratory with the US adult population.
        J. Clin. Lipid. 2015; 9: 817-823https://doi.org/10.1016/j.jacl.2015.07.014
        • Murphy R.A.
        • Devarshi P.P.
        • Ekimura S.
        • Marshall K.
        • Mitmesser S.Hazels
        Long-chain omega-3 fatty acid serum concentrations across life stages in the USA: an analysis of NHANES 2011–2012.
        BMJ Open. 2021; 11e043301https://doi.org/10.1136/bmjopen-2020-043301
        • Veeranna V.
        • Zalawadiya S.K.
        • Panaich S.
        • Patel K.V.
        • Afonso L.
        Comparative analysis of red cell distribution width and high sensitivity C-reactive protein for coronary heart disease mortality prediction in multi-ethnic population: findings from the 1999–2004 NHANES.
        Int. J. Cardiol. 2013; 168: 5156-5161https://doi.org/10.1016/j.ijcard.2013.07.109
        • Shah N.
        • Pahuja M.
        • Pant S.
        • Handa A.
        • Agarwal V.
        • Patel N.
        • Dusaj R.
        Red cell distribution width and risk of cardiovascular mortality: insights from National Health and Nutrition Examination Survey (NHANES)-III.
        Int. J. Cardiol. 2017; 232: 105-110https://doi.org/10.1016/j.ijcard.2017.01.045
        • Harris W.S.
        The Omega-3 Index: clinical Utility for Therapeutic Intervention.
        Curr. Cardiol. Rep. 2010; 12: 503-508https://doi.org/10.1007/s11886-010-0141-6