6 Iodo-delta lactone inhibits angiogenesis in human HT29 colon adenocarcinoma xenograft.

Published:October 07, 2022DOI:


      • IL-δ inhibits cell proliferation and induces apoptosis in human HT29 colon adenocarcinoma xenograft.
      • IL-δ has an anti angiogenic effect in colorectal cancer tumor vasculature.
      • The anti angiogenic effect of IL-δ involves a downregulation of VEGF and VEGF-R2 with an increased expression of Ang-1 and VEGF R1.



      Several studies have shown the antiproliferative effect of iodine and 5‑hydroxy-6 iodo-eicosatrienoic delta lactone (IL-δ) on diverse tissues. It was demonstrated that molecular iodine (I2) and IL-δ, but not iodide (I), exerts anti-neoplastic actions in different cancers. The underlying mechanism through which IL-δ inhibits tumor growth remains unclear. The aim of this study was to analyze the effect of IL-δ on tumor growth and angiogenesis in human HT29 colorectal cancer xenografts.

      Methodology and Results

      HT29 cells were injected subcutaneously into the flanks of nude mice and IL-δ was i.p. injected at a dose of 15 μg three days a week. IL-δ treatment in HT29 xenografts showed time-dependent inhibition of tumor growth, decrease of mitosis and PCNA expression (p < 0.05), increase of P27 expression and Caspase 3 activity after 18 days of treatment (p < 0.05). To assess tumor Microvessel Densities (MVD), CD31 staining by immunohistochemistry was analyzed. IL-δ treatment decreased MVD by 17% and 30% after 18 and 30 days respectively (p < 0.05), as well as it decreased VEGF and VEGF-R2 expression (p < 0.05). Additionally, our findings demonstrated that IL-δ increased VEGF-R1 and Ang-1 mRNA levels (p < 0.01).


      The antitumor efficacy of IL-δ in vivo involves inhibition of cell proliferation as well as induction of apoptosis. IL-δ has also anti-angiogenic effect associated with VEGF and VEGF-R2 downregulation followed by Ang-1 and VEGF-R1 increased expression. High levels of Ang-1 would contribute to mature vessel stabilization and maintenance while VEGF-R1 increase would produce anti-proliferative effect on endothelial cells.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Dugrillon A.
        • Uedelhoven W.M.
        • Pisarev M.A.
        • Bechtner G.
        • Gärtner R.
        Identification of delta-iodolactone in iodide treated human goiter and its inhibitory effect on proliferation of human thyroid follicles.
        Horm. Metab. Res. 1994; 26: 465-469
        • Thomasz L.
        • Oglio R.
        • Randi A.S.
        • Fernandez M.
        • Dagrosa M.A.
        • Cabrini RL R.L.
        • Juvenal G.J.
        • Pisarev M.A
        Biochemical changes during goiter induction by methylmercaptoimidazol and inhibition by delta-iodolactone in rat.
        Thyroid. 2010; 20 (Sep): 1003-1013
        • Rösner H.
        • Wolfgang M.
        • Groebner S.
        • Torremante P.
        Antiproliferative/cytotoxic effects of molecular iodine, povidone-iodine and Lugol's solution in different human carcinoma cell lines.
        Oncol. Lett. 2016; 12: 2159-2162
        • Arroyo-Helguera O.
        • Rojas E.
        • Delgado G.
        • Aceves C.
        Signaling pathways involved in the antiproliferative effect of molecular iodine in normal and tumoral breast cells: evidence that 6-iodolactone mediates apoptotic effects.
        Endocr. Relat. Cancer. 2008; 15: 1003-1011
        • Nava-Villalba M.
        C. Aceves. 6-iodolactone, key mediator of antitumoral properties of iodine.
        Prostaglandins Other Lipid Mediat. 2014; 112: 27-33
        • Pisarev M.A.
        • Gartner R.
        Autoregulatory action of iodine.
        in: Braverman L.E. Uitger R.D. The Thyroid. 9th ed. Lippincott, Philadelphia2000: 85-90
        • Panneels V.
        • Juvenal G.
        • Boeynaems G.J.M.
        • Dumont J.E.
        • Van Sande J.
        Iodide effects on the thyroid.
        in: Preedy V.R. Burrow G.N. Watson R. Comprehensive Handbook on Iodine: Nutritional, Endocrine and Pathological Aspects. Oxford Academic Press, 2009: 99305-99316
        • Aranda N.
        • Sosa S.
        • Delgado G.
        • Aceves C.
        • Anguiano B.
        Uptake and antitumoral effects of iodine and 6-iodolactone in differentiated and undifferentiated human prostate cancer cell lines.
        Prostate. 2013; 73: 31-41
        • Arroyo-Helguera O.
        • Anguiano B.
        • Delgado G.
        • Aceves C.
        Uptake and antiproliferative effect of molecular iodine in the MCF-7 breast cancer cell line.
        Endocr. Relat. Cancer. 2006; 13: 1147-1158
        • Rösner H.
        • Torremante P.
        • Möller W.
        • Gärtner R.
        Antiproliferative/cytotoxic activity of molecular iodine and iodolactones in various human carcinoma cell lines. No interfering with EGF-signaling, but evidence for apoptosis.
        Exp. Clin. Endocrinol. Diabetes. 2010; 118: 410-419
        • Gartner R.
        • Rank P.
        • Ander B.
        The role of iodine and delta-iodolactone in growth and apoptosis of malignant thyroid epithelial cells and breast cancer cells.
        Hormones. 2010; 9: 60-66
        • Langer R.
        • Burzler C.
        • Bechtner G.
        • Gartner R.
        Influence of iodide and iodolactones on thyroid apoptosis. Evidence that apoptosis induced by iodide is mediated by iodolactones in intact porcine thyroid follicles.
        Exp. Clin. Endocrinol. Diabetes. 2003; 111: 325-329
        • Shrivastava A.
        • M Tiwari
        • Sinha R.A.
        • Kumar A.K Balapure
        • Bajpai V.K.
        • Sharma R.
        • Mitra K.
        • Tandon K., A.
        • Godbole M.M.
        Molecular iodine induces caspase-independent apoptosis in human breast carcinoma cells involving mitochondria-mediated pathway.
        J. BiolChem. 2006; 28: 19762-19771
        • Aceves C.
        • García-Solís P.
        • Arroyo-Helguera O.
        • Vega-Riveroll L.
        • Delgado G.
        • Anguiano B.
        Antineoplastic effect of iodine in mammary cancer: participation of 6-iodolactone (6-IL) and peroxisome proliferator activated receptors (PPAR).
        Mol. Cancer. 2009; 8: 33-42
        • Nava-Villalba M.
        • Nuñez-Anita R.E.
        • Bontempo A.
        • Aceves C.
        C. Activation of peroxisome proliferator-activated receptor gamma is crucial for the antitumor effect of 6-iodolactone.
        Mol. Cancer. 2015; 14: 168-172
        • Nuñez-Anita R.
        • Arroyo-Helguera O.
        • Cajero-Juárez M.
        • López-Bojorquez L.
        • Aceves C.
        A complex between 6-iodolactone and the peroxisome proliferator-activated receptor type gamma may mediate the antineoplasic effect of iodine in mammary cancer.
        Prostaglandins Other Lipid Mediat. 2009; 89: 34-42
        • Thomasz L.
        • Oglio R.
        • Salvarredi L.
        • Perona M.
        • Rossich L.
        • Copelli S.
        • Pisarev M.
        • Juvenal G.
        Regulation of NADPH oxidase NOX4 by delta iodolactone (IL-δ) in thyroid cancer cells.
        Mol. Cell. Endocrinol. 2018; 15: 115-126
        • Thomasz L.
        • Oglio R.
        • Rossich L.
        • Villamar V.
        • Perona M.
        • Salvarredi L.
        • Pisarev M.A.
        • Juvenal G.J.
        6 Iodo-D-lactone: a derivative of arachidonic acid with antitumor effects in HT29 colon cancer cells.
        Prostaglandins Leukot. Essent. Fatty Acids. 2013; 88: 273-280
        • Thomasz L.
        • Oglio R.
        • Dagrosa A.
        • Krawiec L.
        • Pisarev M.A.
        • Juvenal G.
        6 iodo-D- lactone reproduces many but not all the effects of iodide.
        Mol. Cell. Endocrinol. 2010; 29 (2): 161-166
        • Abukhdeir A.M.
        • Park B.H.
        P21 and P27: roles in carcinogenesis and drug resistance.
        Expert Rev. Mol. Med. 2008; 1 (jul10:19)
        • Choi H.J.
        • Jung I.K.
        • Kim S.S.
        • Hong S.H.
        Proliferating cell nuclear antigen expression and its relationship to malignancy potential in invasive colorectal carcinomas.
        Dis. Colon Rectum. 1997; 40: 51-59
        • Aceves C.
        • Mendieta I.
        • Anguiano B.
        • Delgado-González E.
        Molecular iodine has extrathyroidal effects as an antioxidant, differentiator, and immunomodulator.
        Int. J. Mol. Sci. 2021; 22: 1228-1243
        • Chi T.
        • Wang M.
        • Wang X.
        • Yang K.
        • Xie F.
        • Liao Z.
        • Wei P.
        PPAR-γ modulators as current and potential cancer treatments.
        Front. Oncol. 2021; 23 (Sep)737776
        • Lee S.Y.
        • Ju M.K.
        • Jeon H.M.
        • Jeong E.K.
        • Lee Y.J.
        • Kim C.H.
        • Park H.G.
        • Han S.I.
        • Kang H.S.
        Regulation of tumor progression by programmed necrosis.
        Oxid. Med. Cell Longev. 2018; 31 (Jan2018)3537471
        • Rahimi N.
        VEGFR-1 and VEGFR-2: two non-identical twins with a unique physiognomy.
        Front. Biosci. 2006; 11: 818-829
        • Benazzi,1 C.
        • Al-Dissi A.
        • Chau C.H.
        • Figg W.D.
        • Sarli G.
        • de Oliveira J.T.
        • Gärtner F.
        Angiogenesis in spontaneous tumors and implications for comparative tumor biology.
        Sci. World J. 2014; 2014: 1-16
        • Lewis J.S.
        • Landers R.J.
        • Underwood J.C.E.
        • Harris A.L.
        Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas.
        J. Pathol. 2000; 192 (150e158)
        • Gupta Manoj Kumar
        • Qin Ren-Yi
        Mechanism and its regulation of tumor-induced angiogenesis.
        World J. Gastroenterol. 2003; 9: 1144-1155
        • Saman H.
        • Raza S.S.
        • Uddin S.
        • Rasul K.
        Inducing angiogenesis, a key step in cancer vascularization, and treatment approaches.
        Cancers (Basel). 2020; 12: 1172-1184
        • Sun Weijing
        Angiogenesis in metastatic colorectal cancer and the benefits of targeted therapy.
        J. Hematol. Oncol. 2012; 5: 63-72
        • Zhiyong L.
        • Lisha Q.
        • Yixiani L.
        • Xiulan Z.
        • Baocun S.
        VEGFR2 regulates endothelial differentiation of colon cancer cells.
        BMC Cancer. 2017; 17: 593-604
        • Shibuya M.
        M. Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis.
        Angiogenesis. 2006; 9: 225-230
        • Kearney J.B.
        • Ambler C.A.
        • Monaco K.A.
        • Johnson N.
        • Rapoport R.G.
        • Bautch V.L.
        Vascular endothelial growth factor receptor Flt-1 negatively regulates developmental blood vessel formation by modulating endothelial cell division.
        Blood. 2002; 99: 2397-2407
        • Di Marco 1 G.
        • Reuter S.
        • Hillebrand U.
        • Amler S.
        • König Maximilian
        • Larger E.
        • Oberleithner H.
        • Brand E.
        • Pavenstädt H.
        • BrandG M.
        The soluble VEGF receptor sFlt1 contributes to endothelial dysfunction in CKD.
        J. Am. Soc. Nephrol. 2009; 20: 2235-2245
        • Chen H.
        • et al.
        Inhibition of vascular endothelial growth factor activity by transfection with the soluble FLT-1 gene.
        J. Cardiovasc. Pharmacol. 2000; 36: 498-502
        • Fong G.H.
        • Rossant J.
        • Gertsenstein M.
        • Breitman M.L.
        Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium.
        Nature. 1995; 376: 66-70
        • Miyake T.
        • Kumasawa K.
        • Sato N.
        • Takiuchi T.
        • Nakamura H.
        • Kimura T.
        Soluble VEGF receptor 1 (sFLT1) induces non-apoptotic death in ovarian and colorectal cancer cells.
        Sci. Rep. 2016; 6: 24853-24863
        • Ahmad 1 S.A.
        • Liu W.
        • Jung Y.D.
        • Fan F.
        • Wilson M.
        • Reinmuth N.
        • Shaheen R.M.
        • Bucana C.D.
        • Ellis L.M.
        The effects of angiopoietin-1 and -2 on tumor growth and angiogenesis in human colon cancer.
        Cancer Res. 2001; 15: 1255-1259
        • Stoeltzing O.
        • et al.
        Angiopoietin-1 inhibits vascular permeability, angiogenesis, and growth of hepatic colon cancer tumors.
        Cancer Res. 2003; 15: 3370-3377
        • Akwii R.G.
        • Sajib M.S.
        • Zahra F.T.
        • Mikelis C.M.
        Role of angiopoietin-2 in vascular physiology and pathophysiology.
        Cancer Res. Cells. 2019; 8: 471-490
        • Namkoong S.
        • Lee S.J.
        • Kim C.K.
        • Kim Y.M.
        • Chung H.T.
        • Lee H.
        • Han J.A.
        • Ha K.S.
        • Kwon Y.G.
        • Kim Y.M.
        Prostaglandin E2 stimulates angiogenesis by activating the nitric oxide/cGMP pathway in human umbilical vein endothelial cells.
        Exp. Mol. Med. 2005; 37 (Dec 316): 588-600
        • Panigraphy D.
        • Huang S.
        • Kieran M.W.
        • Kaipainen A.
        PPARγ as a therapeutic target for tumor angiogenesis and metastasis.
        Cancer Biol. Ther. 2005; 7: 687-693