Advertisement

The biological actions of prostanoids in adipose tissue in physiological and pathophysiological conditions

Published:October 07, 2022DOI:https://doi.org/10.1016/j.plefa.2022.102508

      Highlights

      • PGE2 is prominent prostanoid in regards to its substantial role in both adipose tissue physiology and pathophysiology.
      • Prostanoids are highly involved in adipose tissue inflammation which is a link between obesity and related diseases.
      • Targeting prostanoids may serve as a potential therapeutic strategy for preventing or treating obesity and related diseases.

      Abstract

      Adipose tissue has been established as an endocrine organ that plays an important role in maintaining metabolic homeostasis. Adipose tissue releases several bioactive molecules called adipokines. Inflammation, dysregulation of adipokine synthesis, and secretion are observed in obesity and related diseases and cause adipose tissue dysfunction. Prostanoids, belonging to the eicosanoid family of lipid mediators, can be synthesized in adipose tissue and play a critical role in adipose tissue biology. In this review, we summarized the current knowledge regarding the interaction of prostanoids with adipokines, the expression of prostanoid receptors, and prostanoid synthase enzymes in adipose tissues in health and disease. Furthermore, the involvement of prostanoids in the physiological function or dysfunction of adipose tissue including inflammation, lipolysis, adipogenesis, thermogenesis, browning of adipocytes, and vascular tone regulation was also discussed by examining studies using pharmacological approaches or genetically modified animals for prostanoid receptors/synthase enzymes. Overall, the present review provides a perspective on the evidence from literature regarding the biological effects of prostanoids in adipose tissue. Among prostanoids, prostaglandin E2 (PGE2) is prominent in regards to its substantial role in both adipose tissue physiology and pathophysiology. Targeting prostanoids may serve as a potential therapeutic strategy for preventing or treating obesity and related diseases.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Esteve Ràfols M.
        Adipose tissue: cell heterogeneity and functional diversity.
        Endocrinol. Nutr. 2014; 61 (Feb.): 100-112https://doi.org/10.1016/J.ENDONU.2013.03.011
        • Lebona G.T.
        The presence of paraganglia in the human ascending aortic fold: histological and ultrastructural studies.
        J. Anat. 1993; 183 (Aug.Accessed: Feb. 17, 2020. [Online]. Available): 35-41
        • Wajchenberg B.L.
        Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome.
        Endocrine Rev. 2000; 21 (Endocrine Society): 697-738https://doi.org/10.1210/edrv.21.6.0415
        • Lee M.J.
        • Wu Y.
        • Fried S.K.
        Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications.
        Mol. Aspects Med. 2013; 34 (Feb.): 1-11https://doi.org/10.1016/J.MAM.2012.10.001
        • Wang W.
        • Seale P.
        Control of brown and beige fat development.
        Nat. Rev. Mol. Cell Biol. 2016; 17 (Nature Publishing GroupNov. 01): 691-702https://doi.org/10.1038/nrm.2016.96
        • Cannon B.
        • Nedergaard J.
        Brown adipose tissue: function and physiological significance.
        Physiol. Rev. 2004; 84 (Jan.): 277-359https://doi.org/10.1152/physrev.00015.2003
        • Giordano A.
        • Frontini A.
        • Castellucci M.
        • Cinti S.
        Presence and distribution of cholinergic nerves in rat mediastinal brown adipose tissue.
        J. Histochem. Cytochem. 2004; 52 (Jul.): 923-930https://doi.org/10.1369/jhc.3A6246.2004
        • Seale P.
        • Conroe H.M.
        • Estall J.
        • et al.
        Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice.
        J. Clin. Invest. 2011; 121 (Jan.): 96-105https://doi.org/10.1172/JCI44271
        • Jacene H.A.
        • Cohade C.C.
        • Zhang Z.
        • Wahl R.L.
        The relationship between patients’ serum glucose levels and metabolically active brown adipose tissue detected by PET/CT.
        Mol. Imaging Biol. 2011; 13 (Dec.): 1278-1283https://doi.org/10.1007/s11307-010-0379-9
        • Shabalina I.G.
        • Petrovic N.
        • deJong J.M.A.
        • Kalinovich A.V.
        • Cannon B.
        • Nedergaard J.
        UCP1 in Brite/Beige adipose tissue mitochondria is functionally thermogenic.
        Cell Rep. 2013; 5 (Dec.): 1196-1203https://doi.org/10.1016/j.celrep.2013.10.044
        • Bartelt A.
        • Heeren J.
        Adipose tissue browning and metabolic health.
        Nat. Rev. Endocrinol. 2014; 10 (Nature Publishing Group): 24-36https://doi.org/10.1038/nrendo.2013.204
        • Kirkby N.S.
        • Zaiss A.K.
        • Urquhart P.
        • et al.
        LC-MS/MS confirms that COX-1 drives vascular prostacyclin whilst gene expression pattern reveals non-vascular sites of COX-2 expression.
        PLoS One. 2013; 8 (Jul.)https://doi.org/10.1371/JOURNAL.PONE.0069524
        • Norel X.
        • Sugimoto Y.
        • Ozen G.
        • et al.
        International union of basic and clinical pharmacology. cix. differences and similarities between human and rodent prostaglandin E 2 receptors (EP1-4) and prostacyclin receptor (IP): specific roles in pathophysiologic conditions.
        Pharmacol. Rev. 2020; 72 (Oct.): 910-968https://doi.org/10.1124/PR.120.019331
        • Ozen G.
        • Gomez I.
        • Daci A.
        • et al.
        Inhibition of microsomal PGE synthase-1 reduces human vascular tone by increasing PGI<inf>2</inf>: a safer alternative to COX-2 inhibition.
        Br. J. Pharmacol. 2017; 174https://doi.org/10.1111/bph.13939
        • Fujimori K.
        • Aritake K.
        • Oishi Y.
        • et al.
        L-PGDS-produced PGD2 in premature, but not in mature, adipocytes increases obesity and insulin resistance.
        Sci. Rep. 2019; 9 (Dec.)https://doi.org/10.1038/S41598-018-38453-Y
      1. L. C. Bell-parikh, M. Reilly, G. A. Fitzgerald, et al., Biosynthesis of 15-deoxy-Δ 12, 14 -PGJ 2 and the ligation of PPARγ Find the latest version: and the ligation of PPAR γ, vol. 112, no. 6, pp. 945–955, 2003, doi: 10.1172/JCI200318012.Introduction.

      2. A. Lopategi, C. López-Vicario, J. Alcaraz-Quiles, et al., Role of bioactive lipid mediators in obese adipose tissue inflammation and endocrine dysfunction, vol. 419, pp. 44–59, Jan. 2016.

        • Shaw J.E.
        • Ramwell P.W.
        Release of prostaglandin from rat epididymal fat pad on nervous and hormonal stimulation.
        J. Biol. Chem. 1968; 243 (Apr.): 1498-1503https://doi.org/10.1016/S0021-9258(18)93570-2
        • Lambert B.
        • Champion S.
        • Jacquemin C.
        Relationship between prostaglandin biosynthesis and the effect of insulin on hormone-stimulated lipolysis in rat adipose tissue.
        Biochim. Biophys. Acta. 1976; 431 (Apr.): 132-138https://doi.org/10.1016/0005-2760(76)90267-8
        • Richelsen B.
        Release and effects of prostaglandins in adipose tissue, prostaglandins.
        Leukot. Essent. Fat. Acids. 1992; 47: 171-182https://doi.org/10.1016/0952-3278(92)90235-B
        • Axelrod L.
        • Levine L.
        Prostacyclin production by isolated adipocytes.
        Diabetes. 1981; 30: 163-167https://doi.org/10.2337/DIAB.30.2.163
        • Richelsen B.
        Factors regulating the production of prostaglandin E2 and prostacyclin (prostaglandin I2) in rat and human adipocytes.
        Biochem. J. 1987; 247: 389-394https://doi.org/10.1042/BJ2470389
        • Katz D.P.
        • Rudick J.
        • Knittle J.L.
        Effect of emulsions of medium and long chain triglyceride on human adipose tissue prostaglandin production in vitro.
        J. Parenter. Enter. Nutr. 1988; 12: 178-184https://doi.org/10.1177/0148607188012002178
        • Portet R.
        • Zizine L.
        • de Marco F.
        • Senault C.
        • Bertin R.
        Prostaglandins E2 and Fα levels in white and brown adipose tissues of cold acclimated rats as measured by a new micromethod.
        Biochimie. 1979; 61: 429-431https://doi.org/10.1016/S0300-9084(79)80138-8
        • Jaworski K.
        • Ahmadian M.
        • Duncan R.E.
        • et al.
        AdPLA ablation increases lipolysis and prevents obesity induced by high-fat feeding or leptin deficiency.
        Nat. Med. 2009; 15 (Feb.): 159-168https://doi.org/10.1038/NM.1904
        • Richelsen B.
        • Pedersen O.
        β-adrenergic regulation of prostaglandin E2 receptors in human and rat adipocytes.
        Endocrinology. 1985; 116: 1182-1188https://doi.org/10.1210/endo-116-3-1182
        • Mitchell M.D.
        • Cleland W.H.
        • Smith M.E.
        • Simpson E.R.
        • Mendelson C.R.
        Inhibition of prostaglandin biosynthesis in human adipose tissue by glucocorticosteroids.
        J. Clin. Endocrinol. Metab. 1983; 57: 771-776https://doi.org/10.1210/jcem-57-4-771
        • Parker J.
        • Lane J.
        • Axelrod L.
        Cooperation of adipocytes and endothelial cells required for catecholamine stimulation of PGI2 production by rat adipose tissue.
        Diabetes. 1989; 38: 1123-1132https://doi.org/10.2337/DIAB.38.9.1123
        • Chatzipanteli K.
        • Head C.
        • Megerman J.
        • Axelrod L.
        The relationship between plasma insulin level, prostaglandin production by adipose tissue, and blood pressure in normal rats and rats with diabetes mellitus and diabetic ketoacidosis.
        Metabolism. 1996; 45: 691-698https://doi.org/10.1016/S0026-0495(96)90133-X
        • Fain J.N.
        • Kanu A.
        • Bahouth S.W.
        • Cowan G.S.M.
        • Hiler M.L.
        • Leffler C.W.
        Comparison of PGE2, prostacyclin and leptin release by human adipocytes versus explants of adipose tissue in primary culture.
        Prostaglandins. Leukot. Essent. Fatty Acids. 2002; 67: 467-473https://doi.org/10.1054/PLEF.2002.0430
        • Hernandez-Carretero A.
        • Weber N.
        • La Frano M.R.R.
        • et al.
        Obesity-induced changes in lipid mediators persist after weight loss.
        Int. J. Obes. (Lond). 2018; 42 (Apr.): 728-736https://doi.org/10.1038/IJO.2017.266
        • Hétu P.O.
        • Riendeau D.
        Down-regulation of microsomal prostaglandin E2 synthase-1 in adipose tissue by high-fat feeding.
        Obesity (Silver Spring). 2007; 15 (Jan.): 60-68https://doi.org/10.1038/OBY.2007.514
        • Michaud A.
        • Lacroix-Pépin N.
        • Pelletier M.
        • et al.
        Expression of genes related to prostaglandin synthesis or signaling in human subcutaneous and omental adipose tissue: depot differences and modulation by adipogenesis.
        Mediators Inflamm. 2014; 2014https://doi.org/10.1155/2014/451620
        • Quinkler M.
        • Bujalska I.J.
        • Tomlinson J.W.
        • Smith D.M.
        • Stewart P.M.
        Depot-specific prostaglandin synthesis in human adipose tissue: A novel possible mechanism of adipogenesis.
        Gene. 2006; 380: 137-143https://doi.org/10.1016/j.gene.2006.05.026
        • Farb M.G.
        • Tiwari S.
        • Karki S.
        • et al.
        Cyclooxygenase inhibition improves endothelial vasomotor dysfunction of visceral adipose arterioles in human obesity.
        Obesity (Silver Spring). 2014; 22 (Feb.): 349-355https://doi.org/10.1002/OBY.20505
        • Michaud A.
        • Lacroix-Pépin N.
        • Pelletier M.
        • et al.
        Prostaglandin (PG) F2 alpha synthesis in human subcutaneous and omental adipose tissue: Modulation by inflammatory cytokines and role of the human aldose reductase AKR1B1.
        PLoS One. 2014; 9https://doi.org/10.1371/journal.pone.0090861
        • Komers R.
        • Ždychová J.
        • Cahová M.
        • Kazdová L.
        • Lindsley J.N.
        • Anderson S.
        Renal cyclooxygenase-2 in obese Zucker (fatty) rats.
        Kidney Int. 2005; 67: 2151-2158https://doi.org/10.1111/J.1523-1755.2005.00320.X
        • Petrucci G.
        • Zaccardi F.
        • Giaretta A.
        • et al.
        Obesity is associated with impaired responsiveness to once-daily low-dose aspirin and in vivo platelet activation.
        J. Thromb. Haemost. 2019; 17 (Jun.): 885-895https://doi.org/10.1111/JTH.14445
        • Simeone P.
        • Boccatonda A.
        • Liani R.
        • Santilli F.
        Significance of urinary 11-dehydro-thromboxane B 2 in age-related diseases: Focus on atherothrombosis.
        Ageing Res. Rev. 2018; 48 (Dec.): 51-78https://doi.org/10.1016/J.ARR.2018.09.004
        • Goodwill A.G.
        • James M.E.
        • Frisbee J.C.
        Increased vascular thromboxane generation impairs dilation of skeletal muscle arterioles of obese Zucker rats with reduced oxygen tension.
        Am. J. Physiol. Heart Circ. Physiol. 2008; 295 (Oct.)https://doi.org/10.1152/AJPHEART.00596.2008
        • Jiang J.
        • Tran L.
        • Vasudevan H.
        • Xia Z.
        • Yuen V.G.
        • McNeill J.H.
        Endothelin-1 blockade prevents COX2 induction and TXA2 production in the fructose hypertensive rat.
        Can. J. Physiol. Pharmacol. 2007; 85 (Mar.): 422-429https://doi.org/10.1139/Y06-088
        • García-Alonso V.
        • Titos E.
        • Alcaraz-Quiles J.
        • et al.
        Prostaglandin E2 exerts multiple regulatory actions on human obese adipose tissue remodeling, inflammation, adaptive thermogenesis and lipolysis.
        PLoS One. 2016; 11 (Apr.)https://doi.org/10.1371/JOURNAL.PONE.0153751
        • Rocha-Rodrigues S.
        • Rodríguez A.
        • Gonçalves I.O.
        • et al.
        Impact of physical exercise on visceral adipose tissue fatty acid profile and inflammation in response to a high-fat diet regimen.
        Int. J. Biochem. Cell Biol. 2017; 87: 114-124https://doi.org/10.1016/j.biocel.2017.04.008
        • Urbanet R.
        • Cat A.N.D.
        • Feraco A.
        • et al.
        Adipocyte mineralocorticoid receptor activation leads to metabolic syndrome and induction of prostaglandin D2 synthase.
        Hypertension. 2015; 66: 149-157https://doi.org/10.1161/HYPERTENSIONAHA.114.04981
        • McKenney M.L.
        • Schultz K.A.
        • Boyd J.H.
        • et al.
        Epicardial adipose excision slows the progression of porcine coronary atherosclerosis.
        J. Cardiothorac. Surg. 2014; 9: 1-11https://doi.org/10.1186/1749-8090-9-2
        • Lee H.J.
        • Cantú S.M.
        • Donoso A.S.
        • Choi M.R.
        • Peredo H.A.
        • Puyó A.M.
        Metformin prevents vascular prostanoid release alterations induced by a high-fat diet in rats.
        Auton. Autacoid Pharmacol. 2017; 37 (Jun.): 37-43https://doi.org/10.1111/AAP.12057
        • Unamuno X.
        • Gómez-Ambrosi J.
        • Rodríguez A.
        • Becerril S.
        • Frühbeck G.
        • Catalán V.
        Adipokine dysregulation and adipose tissue inflammation in human obesity.
        Eur. J. Clin. Invest. 2018; 48 (Sep.)https://doi.org/10.1111/ECI.12997
        • Fain J.N.
        • Leffler C.W.
        • Bahouth S.W.
        Eicosanoids as endogenous regulators of leptin release and lipolysis by mouse adipose tissue in primary culture.
        J. Lipid Res. 2000; 41: 1689-1694https://doi.org/10.1016/s0022-2275(20)32003-4
        • Fain J.N.
        • Ballou L.R.
        • Bahouth S.W.
        Obesity is induced in mice heterozygous for cyclooxygenase-2.
        Prostaglandins Other Lipid Mediat. 2001; 65: 199-209https://doi.org/10.1016/S0090-6980(01)00136-8
        • Fain J.N.
        • Leffler C.W.
        • Cowan J.
        • Buffington C.
        • Pouncey L.
        • Bahouth S.W.
        Stimulation of leptin release by arachidonic acid and prostaglandin E2 in adipose tissue from obese humans.
        Metabolism. 2001; 50: 921-928https://doi.org/10.1053/meta.2001.24927
        • Fain J.N.
        • Leffler C.W.
        • Bahouth S.W.
        • Rice A.M.
        • Rivkees S.A.
        Regulation of leptin release and lipolysis by PGE2 in rat adipose tissue.
        Prostaglandins Other Lipid Mediat. 2000; 62: 343-350https://doi.org/10.1016/S0090-6980(00)00088-5
        • Peeraully M.R.
        • Sievert H.
        • Bulló M.
        • Wang B.
        • Trayhurn P.
        Prostaglandin D2 and J2-series (PGJ2, Δ12-PGJ2) prostaglandins stimulate IL-6 and MCP-1, but inhibit leptin, expression and secretion by 3T3-L1 adipocytes.
        Pflugers Arch. Eur. J. Physiol. 2006; 453: 177-187https://doi.org/10.1007/s00424-006-0118-x
        • Yeh Y.N.
        • Hsin K.Y.
        • Zimmer A.
        • Lin L.Y.
        • Hung M.S.
        A structure-function approach identifies L-PGDS as a mediator responsible for glucocorticoid-induced leptin expression in adipocytes.
        Biochem. Pharmacol. 2019; 166: 203-211https://doi.org/10.1016/j.bcp.2019.05.022
        • Lappas M.
        • Permezel M.
        • Rice G.E.
        Leptin and adiponectin stimulate the release of proinflammatory cytokines and prostaglandins from human placenta and maternal adipose tissue via nuclear factor-κB, peroxisomal proliferator-activated receptor-γ and extracellularly regulated kinase 1/2.
        Endocrinology. 2005; 146: 3334-3342https://doi.org/10.1210/en.2005-0406
        • Yokota T.
        • Reddy Meka C.S.
        • Medina K.L.
        • et al.
        Paracrine regulation of fat cell formation in bone marrow cultures via adiponectin and prostaglandins.
        J. Clin. Invest. 2002; 109: 1303-1310https://doi.org/10.1172/JCI0214506
        • Clockaerts S.
        • Bastiaansen-Jenniskens Y.M.
        • Feijt C.
        • et al.
        Cytokine production by infrapatellar fat pad can be stimulated by interleukin 1β and inhibited by peroxisome proliferator activated receptor α agonist.
        Ann. Rheum. Dis. 2012; 71 (Jun.): 1012-1018https://doi.org/10.1136/ANNRHEUMDIS-2011-200688
        • Labrecque J.
        • Michaud A.
        • Gauthier M.F.
        • et al.
        Interleukin-1β and prostaglandin-synthesizing enzymes as modulators of human omental and subcutaneous adipose tissue function.
        Prostaglandins. Leukot. Essent. Fatty Acids. 2019; 141 (Feb.): 9-16https://doi.org/10.1016/J.PLEFA.2018.11.015
        • Yan H.
        • Kermouni A.
        • Abdel-Hafez M.
        • Lau D.C.W.
        Role of cyclooxygenases COX-1 and COX-2 in modulating adipogenesis in 3T3-L1 cells.
        J. Lipid Res. 2003; 44 (Feb.): 424-429https://doi.org/10.1194/JLR.M200357-JLR200
        • Bowers L.W.
        • Brenner A.J.
        • Hursting S.D.
        • Tekmal R.R.
        • deGraffenried L.A.
        Obesity-associated systemic interleukin-6 promotes pre-adipocyte aromatase expression via increased breast cancer cell prostaglandin E2 production.
        Breast Cancer Res. Treat. 2015; 149 (Jan.): 49-57https://doi.org/10.1007/S10549-014-3223-0
        • Fain J.N.
        Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells.
        Vitam. Horm. 2006; 74: 443-477https://doi.org/10.1016/S0083-6729(06)74018-3
        • Kuehl F.A.
        • Humes J.L.
        Direct evidence for a prostaglandin receptor and its application to prostaglandin measurements (rat-adipocytes-antagonists-analogues-mouse ovary assay).
        Proc. Natl. Acad. Sci. U. S. A. 1972; 69: 480-484https://doi.org/10.1073/PNAS.69.2.480
        • Inazumi T.
        • Yamada K.
        • Shirata N.
        • et al.
        Prostaglandin E 2-EP4 axis promotes lipolysis and fibrosis in adipose tissue leading to ectopic fat deposition and insulin resistance.
        Cell Rep. 2020; 33 (Oct.)https://doi.org/10.1016/J.CELREP.2020.108265
        • Tang E.H.C.
        • Cai Y.
        • Wong C.K.
        • et al.
        Activation of prostaglandin e2 -ep4 signaling reduces chemokine production in adipose tissue.
        J. Lipid Res. 2015; 56: 358-368https://doi.org/10.1194/jlr.M054817
        • Richards J.A.
        • Brueggemeier R.W.
        Prostaglandin E2 regulates aromatase activity and expression in human adipose stromal cells via two distinct receptor subtypes.
        J. Clin. Endocrinol. Metab. 2003; 88: 2810-2816https://doi.org/10.1210/jc.2002-021475
        • Virtue S.
        • Masoodi M.
        • De Weijer B.A.M.
        • et al.
        Prostaglandin profiling reveals a role for haematopoietic prostaglandin D synthase in adipose tissue macrophage polarisation in mice and humans.
        Int. J. Obes. 2015; 39: 1151-1160https://doi.org/10.1038/ijo.2015.34
        • Vianello E.
        • Dozio E.
        • Bandera F.
        • et al.
        Correlative study on impaired prostaglandin E2 regulation in epicardial adipose tissue and its role in maladaptive cardiac remodeling via EPAC2 and ST2 signaling in overweight cardiovascular disease subjects.
        Int. J. Mol. Sci. 2020; 21https://doi.org/10.3390/ijms21020520
        • Hsieh P.S.
        • Jin J.S.
        • Chiang C.F.
        • Chan P.C.
        • Chen C.H.
        • Shih K.C.
        COX-2-mediated inflammation in fat is crucial for obesity-linked insulin resistance and fatty liver.
        Obesity (Silver Spring). 2009; 17 (Jun.): 1150-1157https://doi.org/10.1038/OBY.2008.674
        • Fernández-Real J.M.
        • Pickup J.C.
        Innate immunity, insulin resistance and type 2 diabetes.
        Diabetologia. 2012; 55 (Feb.): 273-278https://doi.org/10.1007/S00125-011-2387-Y
        • Gustafson B.
        • Hammarstedt A.
        • Andersson C.X.
        • Smith U.
        Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis.
        Arterioscler. Thromb. Vasc. Biol. 2007; 27 (Nov.): 2276-2283https://doi.org/10.1161/ATVBAHA.107.147835
        • DeFronzo R.A.
        Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard lecture 2009.
        Diabetologia. 2010; 53 (Jul.): 1270-1287https://doi.org/10.1007/S00125-010-1684-1
        • Hu X.
        • Cifarelli V.
        • Sun S.
        • Kuda O.
        • Abumrad N.A.
        • Su X.
        Major role of adipocyte prostaglandin E2 in lipolysis-induced macrophage recruitment.
        J. Lipid Res. 2016; 57: 663-673https://doi.org/10.1194/jlr.M066530
        • Chan P.C.
        • Hsiao F.C.
        • Chang H.M.
        • Wabitsch M.
        • Hsieh P.Shiuan
        Importance of adipocyte cyclooxygenase-2 and prostaglandin E2-prostaglandin E receptor 3 signaling in the development of obesity-induced adipose tissue inflammation and insulin resistance.
        FASEB J. 2016; 30: 2282-2297https://doi.org/10.1096/fj.201500127
        • Gonçalves R.M.
        • Delgobo M.
        • Agnes J.P.
        • et al.
        COX-2 promotes mammary adipose tissue inflammation, local estrogen biosynthesis, and carcinogenesis in high-sugar/fat diet treated mice.
        Cancer Lett. 2021; 502: 44-57https://doi.org/10.1016/j.canlet.2021.01.003
        • Ghoshal S.
        • Trivedi D.B.
        • Graf G.A.
        • Loftin C.D.
        Cyclooxygenase-2 deficiency attenuates adipose tissue differentiation and inflammation in mice.
        J. Biol. Chem. 2011; 286: 889-898https://doi.org/10.1074/jbc.M110.139139
        • Lijnen H.R.
        • Van Hoef B.
        • Lu H.R.
        • Gallacher D.J.
        Rofecoxib impairs adipose tissue development in a murine model of nutritionally induced obesity.
        Thromb. Haemost. 2008; 100: 338-342https://doi.org/10.1160/TH08-02-0114
        • Hsieh P.S.
        • Lu K.C.
        • Chiang C.F.
        • Chen C.H.
        Suppressive effect of COX2 inhibitor on the progression of adipose inflammation in high-fat-induced obese rats.
        Eur. J. Clin. Invest. 2010; 40: 164-171https://doi.org/10.1111/J.1365-2362.2009.02239.X
        • Timur U.T.
        • Caron M.M.J.
        • Bastiaansen-Jenniskens Y.M.
        • et al.
        Celecoxib-mediated reduction of prostanoid release in Hoffa's fat pad from donors with cartilage pathology results in an attenuated inflammatory phenotype.
        Osteoarthr. Cartil. 2018; 26: 697-706https://doi.org/10.1016/j.joca.2018.01.025
        • Granado M.
        • Martín A.I.
        • Castillero E.
        • López-Calderón A.
        • Villanúa M.Á.
        Cyclooxygenase-2 inhibition reverts the decrease in adiponectin levels and attenuates the loss of white adipose tissue during chronic inflammation.
        Eur. J. Pharmacol. 2009; 608 (Apr.): 97-103https://doi.org/10.1016/J.EJPHAR.2009.02.030
        • Wu D.
        • Ren Z.
        • Pae M.
        • et al.
        Aging up-regulates expression of inflammatory mediators in mouse adipose tissue.
        J. Immunol. 2007; 179 (Oct.): 4829-4839https://doi.org/10.4049/JIMMUNOL.179.7.4829
        • Pierre C.
        • Guillebaud F.
        • Airault C.
        • et al.
        Invalidation of microsomal prostaglandin E synthase-1 (mPGES-1) reduces diet-induced low-grade inflammation and adiposity.
        Front. Physiol. 2018; 9: 1-17https://doi.org/10.3389/fphys.2018.01358
        • Cunha N.V.
        • de Abreu S.B.
        • Panis C.
        • et al.
        Cox-2 inhibition attenuates cardiovascular and inflammatory aspects in monosodium glutamate-induced obese rats.
        Life Sci. 2010; 87 (Sep.): 375-381https://doi.org/10.1016/J.LFS.2010.07.014
        • Ozen G.
        • Boumiza S.
        • Deschildre C.
        • et al.
        Inflammation increases MMP levels via PGE2 in human vascular wall and plasma of obese women.
        Int. J. Obes. 2019; 43https://doi.org/10.1038/s41366-018-0235-6
        • Tans R.
        • Bande R.
        • van Rooij A.
        • et al.
        Evaluation of cyclooxygenase oxylipins as potential biomarker for obesity-associated adipose tissue inflammation and type 2 diabetes using targeted multiple reaction monitoring mass spectrometry.
        Prostaglandins Leukot. Essent. Fat. Acids. 2020; 160102157https://doi.org/10.1016/j.plefa.2020.102157
        • Holmes S.W.
        • Horton E.W.
        • Main I.H.M.
        The effect of prostaglandin E1 on responses of smooth muscle to catechol amines, angiotensin and vasopressin.
        Br. J. Pharmacol. Chemother. 1963; 21: 538-543https://doi.org/10.1111/j.1476-5381.1963.tb02021.x
        • von Euler U.S.
        On the specific vaso-dilating and plain muscle stimulating substances from accessory genital glands in man and certain animals (prostaglandin and vesiglandin).
        J. Physiol. 1936; 88 (Nov.): 213-234https://doi.org/10.1113/JPHYSIOL.1936.SP003433
        • Steinberg D.
        • Vaughan M.
        • Nestel P.J.
        • Bergström S.
        Effects of prostaglandin E opposing those of catecholamines on blood pressure and on triglyceride breakdown in adipose tissue.
        Biochem. Pharmacol. 1963; 12: 764-766https://doi.org/10.1016/0006-2952(63)90053-4
        • Hoffman B.B.
        • Chang H.
        • Reaven G.M.
        Stimulation and inhibition of lipolysis in isolated rat adipocytes: evidence for age-related changes in responses to forskolin and PGE1.
        Horm. Metab. Res. 1987; 19: 358-360https://doi.org/10.1055/S-2007-1011823
        • Bergström S.
        • Carlson L.A.
        Influence of the nutritional state on the inhibition of lipolysis in adipose tissue by Prostaglandin E1 and nicotinic acid. Prostaglandin and related factors 46.
        Acta Physiol. Scand. 1965; 65: 383-384https://doi.org/10.1111/J.1748-1716.1965.TB04289.X
        • Kupiecki F.P.
        Effects of prostaglandin E, on lipolysis and dasma free fattv acids in the fasted rat.
        J. Lipid Res. 1967; 8 (Nov.): 577-580https://doi.org/10.1016/S0022-2275(20)38878-7
        • Freeth A.
        • Udupi V.
        • Basile R.
        • Green A.
        Prolonged treatment with prostaglandin E1 increases the rate of lipolysis in rat adipocytes.
        Life Sci. 2003; 73 (Jun.): 393-401https://doi.org/10.1016/S0024-3205(03)00313-8
        • Green A.
        • Johnson J.L.
        Evidence for impaired coupling of receptors to Gi protein in adipocytes from streptozocin-induced diabetic rats.
        Diabetes. 1991; 40: 88-94https://doi.org/10.2337/diab.40.1.88
        • Saggerson D.
        • Orford M.
        • Chatzipanteli K.
        • Shepherd J.
        Diabetes decreases sensitivity of adipocyte lipolysis to inhibition by G-linked receptor agonists.
        Cell. Signal. 1991; 3: 613-624https://doi.org/10.1016/0898-6568(91)90038-V
        • Carlson L.A.
        • Hallberg D.
        Basal lipolysis and effects of norepinephrine and prostaglandin E1 on lipolysis in human subcutaneous and omental adipose tissue.
        J. Lab. Clin. Med. 1968; 71 (Mar.): 368-377https://doi.org/10.5555/uri:pii:0022214368900905
        • Micheli H.
        • Carlson L.A.
        • Hallberg D.
        Comparison of lipolysis in human subcutaneous and omental adipose tissue with regard to effects of noradrenaline, theophylline, prostaglandin E1 and age.
        Acta Chir. Scand. 1969; 135: 663-670
        • Bizzi A.
        • Codegoni A.M.
        • Lietti A.
        • Garattini S.
        Different responses of white and brown adipose tissue to drugs affecting lipolysis.
        Biochem. Pharmacol. 1968; 17: 2407-2412https://doi.org/10.1016/0006-2952(68)90130-5
        • Fredholm B.B.
        • Hedqvist P.
        Role of pre- and postjunctional inhibition by prostaglandin E2 of lipolysis induced by sympathetic nerve stimulation in dog subcutaneous adipose tissue in situ.
        Br. J. Pharmacol. 1973; 47: 711-718https://doi.org/10.1111/J.1476-5381.1973.TB08198.X
        • Richelsen B.
        Prostaglandin E2 action and binding in human adipocytes: effects of sex, age, and obesity.
        Metabolism. 1988; 37: 268-275https://doi.org/10.1016/0026-0495(88)90107-2
        • Henkel J.
        • Frede K.
        • Schanze N.
        • et al.
        Stimulation of fat accumulation in hepatocytes by PGE2-dependent repression of hepatic lipolysis,β-oxidation and VLDL-synthesis.
        Lab. Investig. 2012; 92: 1597-1606https://doi.org/10.1038/labinvest.2012.128
        • Ceddia R.P.
        • Lee D.
        • Maulis M.F.
        • et al.
        The PGE2 EP3 receptor regulates diet-induced adiposity in male mice.
        Endocrinology. 2016; 157 (Jan.): 220-232https://doi.org/10.1210/EN.2015-1693
        • Strong P.
        • Coleman R.A.
        • Humphrey P.P.A.
        Prostanoid-induced inhibition of lipolysis in rat isolated adipocytes: probable involvement of EP3 receptors.
        Prostaglandins. 1992; 43: 559-566https://doi.org/10.1016/0090-6980(92)90115-A
        • Gaidhu M.P.
        • Anthony N.M.
        • Patel P.
        • Hawke T.J.
        • Ceddia R.B.
        Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: role of ATGL, HSL, and AMPK.
        Am. J. Physiol. Cell Physiol. 2010; 298 (Apr.)https://doi.org/10.1152/AJPCELL.00547.2009
        • Shen L.
        • Xie T.R.
        • Yang R.Z.
        • Chen Y.
        • Kang J.S.
        Application of a dye-based mitochondrion-thermometry to determine the receptor downstream of prostaglandin E 2 involved in the regulation of hepatocyte metabolism.
        Sci. Rep. 2018; 8 (Dec.)https://doi.org/10.1038/S41598-018-31356-Y
        • Wakai E.
        • Aritake K.
        • Urade Y.
        • Fujimori K.
        Prostaglandin D 2 enhances lipid accumulation through suppression of lipolysis via DP2 (CRTH2) receptors in adipocytes.
        Biochem. Biophys. Res. Commun. 2017; 490 (Aug.): 393-399https://doi.org/10.1016/J.BBRC.2017.06.053
        • Gaion R.M.
        • Trento M.
        • Murari L.
        • Dorigo P.
        • Ferro C.
        • Fassina G.
        Prostacyclin and lipolysis in rat fat cells.
        Biochem. Pharmacol. 1984; 33 (Dec.): 3793-3798https://doi.org/10.1016/0006-2952(84)90042-X
        • Chatzipanteli K.
        • Rudolph S.
        • Axelrod L.
        Coordinate control of lipolysis by prostaglandin E2 and prostacyclin in rat adipose tissue.
        Diabetes. 1992; 41: 927-935https://doi.org/10.2337/DIAB.41.8.927
        • Girouard H.
        • Savard R.
        The lack of bimodality in the effects of endogenous and exogenous prostaglandins on fat cell lipolysis in rats.
        Prostaglandins Other Lipid Mediat. 1998; 56 (May): 43-52https://doi.org/10.1016/S0090-6980(98)00035-5
        • Kuo A.
        • Lee M.Y.
        • Yang K.
        • Gross R.W.
        • Sessa W.C.
        Caveolin-1 regulates lipid droplet metabolism in endothelial cells via autocrine prostacyclin-stimulated, cAMP-mediated lipolysis.
        J. Biol. Chem. 2018; 293 (Jan.): 973-983https://doi.org/10.1074/JBC.RA117.000980
        • Yang A.
        • Mottillo E.P.
        Adipocyte Lipolysis: from molecular mechanisms of regulation todisease and therapeutics.
        Biochem. J. 2020; 477: 985https://doi.org/10.1042/BCJ20190468
        • Wolf G.
        Adipose-specific phospholipase as regulator of adiposity.
        Nutr. Rev. 2009; 67 (Sep.): 551-554https://doi.org/10.1111/J.1753-4887.2009.00227.X
        • Midgett C.
        • Stitham J.
        • Martin K.A.
        • Hwa J.
        Prostacyclin receptor regulation–from transcription to trafficking.
        Curr. Mol. Med. 2011; 11 (Nov.): 517-527https://doi.org/10.2174/156652411800615144
        • Hammarstedt A.
        • Gogg S.
        • Hedjazifar S.
        • Nerstedt A.
        • Smith U.
        Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity.
        Physiol. Rev. 2018; 98: 1911-1941https://doi.org/10.1152/PHYSREV.00034.2017
      3. N. Haider and L. Larose, Harnessing adipogenesis to prevent obesity, adipocyte, vol. 8, no. 1, pp. 98–104, Jan. 2019, doi: 10.1080/21623945.2019.1583037.

        • Forman B.M.
        • Tontonoz P.
        • Chen J.
        • Brun R.P.
        • Spiegelman B.M.
        • Evans R.M.
        15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma.
        Cell. 1995; 83 (Dec.): 803-812https://doi.org/10.1016/0092-8674(95)90193-0
        • Fujitani Y.
        • Aritake K.
        • Kanaoka Y.
        • et al.
        Pronounced adipogenesis and increased insulin sensitivity caused by overproduction of prostaglandin D2 in vivo.
        FEBS J. 2010; 277 (Mar.): 1410-1419https://doi.org/10.1111/J.1742-4658.2010.07565.X
        • Khan F.
        • Syeda P.K.
        • Nartey M.N.N.
        • et al.
        Stimulation of fat storage by prostacyclin and selective agonists of prostanoid IP receptor during the maturation phase of cultured adipocytes.
        Cytotechnology. 2016; 68 (Dec.): 2417-2429https://doi.org/10.1007/S10616-016-9960-7
        • Palacios V.Garcia
        • Morita I.
        • Murota S.
        Expression of adipogenesis markers in a murine stromal cell line treated with 15-deoxy Delta(12,14)-prostaglandin J2, interleukin-11, 9-cis retinoic acid and vitamin K2.
        Prostaglandins. Leukot. Essent. Fatty Acids. 2001; 65 (Nov.): 215-221https://doi.org/10.1054/PLEF.2001.0314
        • Fujimori K.
        • Urade Y.
        Transcriptional regulation in adipogenesis through PPARγ-dependent and -independent mechanisms by prostaglandins.
        Methods Mol. Biol. 2014; 1164: 177-196https://doi.org/10.1007/978-1-4939-0805-9_15
        • Austin S.
        • Medvedev A.
        • Van Z.H.
        • Adachi H.
        • Hirose T.
        • Jetten A.M.
        Induction of the nuclear orphan receptor RORgamma during adipocyte differentiation of D1 and 3T3-L1 cells.
        Cell Growth Differ. 1998; 9 (Accessed: Jan. 03, 2022. [Online]. Available:): 267-276
        • Sasaki Y.
        • Kuwata H.
        • Akatsu M.
        • et al.
        Involvement of prostacyclin synthase in high-fat-diet-induced obesity.
        Prostaglandins Other Lipid Mediat. 2021; 153 (Apr.)https://doi.org/10.1016/J.PROSTAGLANDINS.2020.106523
        • Reginato M.J.
        • Krakow S.L.
        • Bailey S.T.
        • Lazar M.A.
        Prostaglandins promote and block adipogenesis through opposing effects on peroxisome proliferator-activated receptor gamma.
        J. Biol. Chem. 1998; 273 (Jan.): 1855-1858https://doi.org/10.1074/JBC.273.4.1855
        • Liu L.
        • Clipstone N.A.
        Prostaglandin F2alpha inhibits adipocyte differentiation via a G alpha q-calcium-calcineurin-dependent signaling pathway.
        J. Cell. Biochem. 2007; 100 (Jan.): 161-173https://doi.org/10.1002/JCB.21044
        • Liu L.
        • Clipstone N.A.
        Prostaglandin F2alpha induces the normoxic activation of the hypoxia-inducible factor-1 transcription factor in differentiating 3T3-L1 preadipocytes: Potential role in the regulation of adipogenesis.
        J. Cell. Biochem. 2008; 105 (Sep.): 89-98https://doi.org/10.1002/JCB.21801
        • Annamalai D.
        • Clipstone N.A.
        Prostaglandin F2α inhibits adipogenesis via an autocrine-mediated interleukin-11/glycoprotein 130/STAT1-dependent signaling cascade.
        J. Cell. Biochem. 2014; 115: 1308-1321https://doi.org/10.1002/JCB.24785
        • Fujimori K.
        • Ueno T.
        • Nagata N.
        • et al.
        Suppression of adipocyte differentiation by aldo-keto reductase 1B3 acting as prostaglandin F2alpha synthase.
        J. Biol. Chem. 2010; 285 (Mar.): 8880-8886https://doi.org/10.1074/JBC.M109.077164
        • Volat F.E.
        • Pointud J.C.
        • Pastel E.
        • et al.
        Depressed levels of prostaglandin F2α in mice lacking Akr1b7 increase basal adiposity and predispose to diet-induced obesity.
        Diabetes. 2012; 61 (Nov.): 2796-2806https://doi.org/10.2337/DB11-1297
        • Ueno T.
        • Fujimori K.
        Novel suppression mechanism operating in early phase of adipogenesis by positive feedback loop for enhancement of cyclooxygenase-2 expression through prostaglandin F2α receptor mediated activation of MEK/ERK-CREB cascade.
        FEBS J. 2011; 278 (Aug.): 2901-2912https://doi.org/10.1111/J.1742-4658.2011.08213.X
        • Nikolopoulou E.
        • Papacleovoulou G.
        • Jean-Alphonse F.
        • et al.
        Arachidonic acid-dependent gene regulation during preadipocyte differentiation controls adipocyte potential.
        J. Lipid Res. 2014; 55 (Jan.): 2479-2490https://doi.org/10.1194/JLR.M049551
        • Silvestri C.
        • Martella A.
        • Poloso N.J.
        • et al.
        Anandamide-derived prostamide F2α negatively regulates adipogenesis.
        J. Biol. Chem. 2013; 288 (Aug.): 23307-23321https://doi.org/10.1074/JBC.M113.489906
        • Inazumi T.
        • Shirata N.
        • Morimoto K.
        • Takano H.
        • Segi-Nishida E.
        • Sugimoto Y.
        Prostaglandin E₂-EP4 signaling suppresses adipocyte differentiation in mouse embryonic fibroblasts via an autocrine mechanism.
        J. Lipid Res. 2011; 52 (Aug.): 1500-1508https://doi.org/10.1194/JLR.M013615
        • Tsuboi H.
        • Sugimoto Y.
        • Kainoh T.
        • Ichikawa A.
        Prostanoid EP4 receptor is involved in suppression of 3T3-L1 adipocyte differentiation.
        Biochem. Biophys. Res. Commun. 2004; 322 (Sep.): 1066-1072https://doi.org/10.1016/J.BBRC.2004.08.018
        • Fujimori K.
        • Yano M.
        • Ueno T.
        Synergistic suppression of early phase of adipogenesis by microsomal PGE synthase-1 (PTGES1)-produced PGE2 and aldo-keto reductase 1B3-produced PGF2α.
        PLoS One. 2012; 7 (Sep.)https://doi.org/10.1371/JOURNAL.PONE.0044698
        • Ida Y.
        • Hikage F.
        • Umetsu A.
        • Ida H.
        • Ohguro H.
        Omidenepag, a non-prostanoid EP2 receptor agonist, induces enlargement of the 3D organoid of 3T3-L1 cells.
        Sci. Rep. 2020; 10 (Dec.)https://doi.org/10.1038/S41598-020-72538-X
        • Chou W.L.
        • Chuang L.M.
        • Chou C.C.
        • et al.
        Identification of a novel prostaglandin reductase reveals the involvement of prostaglandin E2 catabolism in regulation of peroxisome proliferator-activated receptor gamma activation.
        J. Biol. Chem. 2007; 282 (Jun.): 18162-18172https://doi.org/10.1074/JBC.M702289200
        • Yu Y.H.
        • Chang Y.C.
        • Su T.H.
        • Nong J.Y.
        • Li C.C.
        • Chuang L.M.
        Prostaglandin reductase-3 negatively modulates adipogenesis through regulation of PPARγ activity.
        J. Lipid Res. 2013; 54 (Sep.): 2391-2399https://doi.org/10.1194/JLR.M037556
        • Minamizaki T.
        • Yoshiko Y.
        • Yoshioka H.
        • Kozai K.
        • Aubin J.E.
        • Maeda N.
        The EP4-ERK-dependent pathway stimulates osteo-adipogenic progenitor proliferation resulting in increased adipogenesis in fetal rat calvaria cell cultures.
        Prostaglandins Other Lipid Mediat. 2012; 97 (Mar.): 97-102https://doi.org/10.1016/J.PROSTAGLANDINS.2012.01.001
        • Noack C.
        • Hempel U.
        • Preissler C.
        • Dieter P.
        Prostaglandin E2 impairs osteogenic and facilitates adipogenic differentiation of human bone marrow stromal cells.
        Prostaglandins. Leukot. Essent. Fatty Acids. 2015; 94 (Mar.): 91-98https://doi.org/10.1016/J.PLEFA.2014.11.008
        • Feldon S.E.
        • O'Loughlin C.W.
        • Ray D.M.
        • Landskroner-Eiger S.
        • Seweryniak K.E.
        • Phipps R.P.
        Activated human T lymphocytes express cyclooxygenase-2 and produce proadipogenic prostaglandins that drive human orbital fibroblast differentiation to adipocytes.
        Am. J. Pathol. 2006; 169: 1183-1193https://doi.org/10.2353/AJPATH.2006.060434
        • Zhang X.
        • Luo Y.
        • Wang C.
        • et al.
        Adipose mTORC1 suppresses prostaglandin signaling and Beige Adipogenesis via the CRTC2-COX-2 pathway.
        Cell Rep. 2018; 24 (Sep.): 3180-3193https://doi.org/10.1016/J.CELREP.2018.08.055
        • Bhatnagar S.
        • Meaney M.J.
        • Amir S.
        The effects of prostaglandin E2 injected into the paraventricular nucleus of the hypothalamus on brown adipose tissue thermogenesis in spontaneously hypertensive rats.
        Brain Res. 1993; 613 (Jun.): 285-287https://doi.org/10.1016/0006-8993(93)90911-6
        • Nakamura Y.
        • Nakamura K.
        • Matsumura K.
        • Kobayashi S.
        • Kaneko T.
        • Morrison S.F.
        Direct pyrogenic input from prostaglandin EP3 receptor-expressing preoptic neurons to the dorsomedial hypothalamus.
        Eur. J. Neurosci. 2005; 22 (Dec.): 3137-3146https://doi.org/10.1111/J.1460-9568.2005.04515.X
        • Amir S.
        • Schiavetto A.
        Injection of prostaglandin E2 into the anterior hypothalamic preoptic area activates brown adipose tissue thermogenesis in the rat.
        Brain Res. 1990; 528 (Sep.): 138-142https://doi.org/10.1016/0006-8993(90)90206-Q
        • Fyda D.M.
        • Cooper K.E.
        • Veale W.L.
        Nucleus tractus solitarii lesions alter the metabolic and hyperthermic response to central prostaglandin E1 in the rat.
        J. Physiol. 1991; 442 (Oct.): 337-349https://doi.org/10.1113/JPHYSIOL.1991.SP018796
        • Monda M.
        • Amaro S.
        • De Luca B.
        Non-shivering thermogenesis during prostaglandin E1 fever in rats: role of the cerebral cortex.
        Brain Res. 1994; 651 (Jul.): 148-154https://doi.org/10.1016/0006-8993(94)90691-2
        • Monda M.
        • Viggiano A.
        • Mondola P.
        • De Luca V.
        Inhibition of prostaglandin synthesis reduces hyperthermic reactions induced by hypocretin-1/orexin A.
        Brain Res. 2001; 909 (Aug.): 68-74https://doi.org/10.1016/S0006-8993(01)02606-3
        • Morrison S.F.
        Raphe pallidus neurons mediate prostaglandin E2-evoked increases in brown adipose tissue thermogenesis.
        Neuroscience. 2003; 121 (Sep.): 17-24https://doi.org/10.1016/S0306-4522(03)00363-4
        • Ootsuka Y.
        • Blessing W.W.
        • Steiner A.A.
        • Romanovsky A.A.
        Fever response to intravenous prostaglandin E2 is mediated by the brain but does not require afferent vagal signaling.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008; 294 (Apr.)https://doi.org/10.1152/AJPREGU.00709.2007
        • Yoshida K.
        • Nakamura K.
        • Matsumura K.
        • et al.
        Neurons of the rat preoptic area and the raphe pallidus nucleus innervating the brown adipose tissue express the prostaglandin E receptor subtype EP3.
        Eur. J. Neurosci. 2003; 18 (Oct.): 1848-1860https://doi.org/10.1046/J.1460-9568.2003.02919.X
        • Madden C.J.
        • Morrison S.F.
        Excitatory amino acid receptors in the dorsomedial hypothalamus mediate prostaglandin-evoked thermogenesis in brown adipose tissue.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004; 286https://doi.org/10.1152/AJPREGU.00515.2003
        • Cruz J.V.
        • Maba I.K.
        • Correia D.
        • Kaziuk F.D.
        • Cadena S.M.S.C.
        • Zampronio A.R.
        Intermittent binge-like ethanol exposure during adolescence attenuates the febrile response by reducing brown adipose tissue thermogenesis in rats.
        Drug Alcohol Depend. 2020; 209 (Apr.)https://doi.org/10.1016/J.DRUGALCDEP.2020.107904
        • Takeuchi M.
        • Yoneyama Y.
        • Power G.G.
        Role of prostaglandin E2 and prostacyclin in nonshivering thermogenesis during simulated birth in utero.
        Prostaglandins. Leukot. Essent. Fatty Acids. 1994; 51: 373-380https://doi.org/10.1016/0952-3278(94)90011-6
        • Ball K.
        • Takeuchi M.
        • Yoneyama Y.
        • Power G.G.
        Role of prostaglandin i2 and prostaglandin e2 in the initiation of nonshivering thermogenesis during the simulation of birth in utero.
        Reprod. Fertil. Dev. 1995; 7: 399-403https://doi.org/10.1071/RD9950399
        • Wang W.
        • Kissig M.
        • Rajakumari S.
        • et al.
        Ebf2 is a selective marker of brown and beige adipogenic precursor cells.
        Proc. Natl. Acad. Sci. U. S. A. 2014; 111 (Oct.): 14466-14471https://doi.org/10.1073/PNAS.1412685111
        • Vishvanath L.
        • Macpherson K.A.
        • Hepler C.
        • et al.
        Pdgfrβ+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice.
        Cell Metab. 2016; 23 (Feb.): 350-359https://doi.org/10.1016/J.CMET.2015.10.018
        • Lee Y.H.
        • Petkova A.P.
        • Konkar A.A.
        • Granneman J.G.
        Cellular origins of cold-induced brown adipocytes in adult mice.
        FASEB J. 2015; 29 (Jan.): 286-299https://doi.org/10.1096/FJ.14-263038
        • Kuryłowicz A.
        • Puzianowska-Kuźnicka M.
        Induction of adipose tissue browning as a strategy to combat obesity.
        Int. J. Mol. Sci. 2020; 21 (Sep.): 1-28https://doi.org/10.3390/IJMS21176241
        • Cheng L.
        • Wang J.
        • Dai H.
        • et al.
        Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus.
        Adipocyte. 2021; 10: 48-65https://doi.org/10.1080/21623945.2020.1870060
        • Vegiopoulos A.
        • Müller-Decker K.
        • Strzoda D.
        • et al.
        Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes.
        Science. 2010; 328 (May): 1158-1161https://doi.org/10.1126/SCIENCE.1186034
        • García-Alonso V.
        • López-Vicario C.
        • Titos E.
        • et al.
        Coordinate functional regulation between microsomal prostaglandin E synthase-1 (mPGES-1) and peroxisome proliferator-activated receptor γ (PPARγ) in the conversion of white-to-brown adipocytes.
        J. Biol. Chem. 2013; 288 (Sep.): 28230-28242https://doi.org/10.1074/JBC.M113.468603
        • Madsen L.
        • Pedersen L.M.
        • Lillefosse H.H.
        • et al.
        UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity.
        PLoS One. 2010; 5https://doi.org/10.1371/JOURNAL.PONE.0011391
        • Okla M.
        • Al Madani J.O.
        • Chung S.
        • Alfayez M.
        Apigenin Reverses Interleukin-1β-Induced Suppression of Adipocyte Browning via COX2/PGE2 Signaling Pathway in Human Adipocytes.
        Mol. Nutr. Food Res. 2020; 64 (Jan.)https://doi.org/10.1002/MNFR.201900925
        • Shamsi F.
        • Xue R.
        • Huang T.L.
        • et al.
        FGF6 and FGF9 regulate UCP1 expression independent of brown adipogenesis.
        Nat. Commun. 2020; 11 (Dec.)https://doi.org/10.1038/S41467-020-15055-9
        • Wankhade U.D.
        • Lee J.H.
        • Dagur P.K.
        • et al.
        TGF-β receptor 1 regulates progenitors that promote browning of white fat.
        Mol. Metab. 2018; 16 (Oct.): 160-171https://doi.org/10.1016/J.MOLMET.2018.07.008
        • Paschos G.K.
        • Tang S.Y.
        • Theken K.N.
        • et al.
        Cold-induced browning of inguinal white adipose tissue is independent of adipose tissue cyclooxygenase-2.
        Cell Rep. 2018; 24 (Jul.): 809-814https://doi.org/10.1016/J.CELREP.2018.06.082
        • Pisani D.F.
        • Ghandour R.A.
        • Beranger G.E.
        • et al.
        The ω6-fatty acid, arachidonic acid, regulates the conversion of white to brite adipocyte through a prostaglandin/calcium mediated pathway.
        Mol. Metab. 2014; 3 (Dec.): 834-847https://doi.org/10.1016/J.MOLMET.2014.09.003
        • Ghandour R.A.
        • Colson C.
        • Giroud M.
        • et al.
        Impact of dietary ω3 polyunsaturated fatty acid supplementation on brown and brite adipocyte function.
        J. Lipid Res. 2018; 59: 452-461https://doi.org/10.1194/JLR.M081091
        • Soltis E.E.
        • Cassis L.A.
        Influence of perivascular adipose tissue on rat aortic smooth muscle responsiveness.
        Clin. Exp. Hypertens. 1991; A13: 277-296https://doi.org/10.3109/10641969109042063
        • Ozen G.
        • Daci A.
        • Norel X.
        • Topal G.
        Human perivascular adipose tissue dysfunction as a cause of vascular disease: Focus on vascular tone and wall remodeling.
        Eur. J. Pharmacol. 2015; 766https://doi.org/10.1016/j.ejphar.2015.09.012
        • Zaborska K.E.
        • Wareing M.
        • Austin C.
        Comparisons between perivascular adipose tissue and the endothelium in their modulation of vascular tone.
        Br. J. Pharmacol. 2017; 174: 3388-3397https://doi.org/10.1111/bph.13648
      4. M. Löhn, G. Dubrovska, B. Lauterbach, F. C. Luft, M. Gollasch, and A. M. Sharma, Periadventitial fat releases a vascular relaxing factor, vol. 16, no. 9, pp. 1057–1063, Jul. 2002, doi: 10.1096/fj.02-0024com.

        • Lynch F.M.
        • Withers S.B.
        • Yao Z.
        • et al.
        Perivascular adipose tissue-derived adiponectin activates BKCa channels to induce anticontractile responses.
        Am. J. Physiol. - Hear. Circ. Physiol. 2013; 304: H786https://doi.org/10.1152/AJPHEART.00697.2012
        • Ozen G.
        • Topal G.
        • Gomez I.
        • et al.
        Control of human vascular tone by prostanoids derived from perivascular adipose tissue.
        Prostaglandins Other Lipid Mediat. 2013; 107 (Dec.): 13-17https://doi.org/10.1016/j.prostaglandins.2013.06.002
        • Chang L.
        • Villacorta L.
        • Li R.
        • et al.
        Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis.
        Circulation. 2012; 126 (Aug.): 1067-1078https://doi.org/10.1161/CIRCULATIONAHA.112.104489
        • Awata W.M.C.
        • Gonzaga N.A.
        • Borges V.F.
        • et al.
        Perivascular adipose tissue contributes to lethal sepsis-induced vasoplegia in rats.
        Eur. J. Pharmacol. 2019; 863172706https://doi.org/10.1016/j.ejphar.2019.172706
        • Mendizábal Y.
        • Llorens S.
        • Nava E.
        Vasoactive effects of prostaglandins from the perivascular fat of mesenteric resistance arteries in WKY and SHROB rats.
        Life Sci. 2013; 93: 1023-1032https://doi.org/10.1016/j.lfs.2013.10.021
        • Meyer M.R.
        • Fredette N.C.
        • Barton M.
        • Prossnitz E.R.
        Regulation of vascular smooth muscle tone by adipose-derived contracting factor.
        PLoS One. 2013; 8 (Nov.)https://doi.org/10.1371/JOURNAL.PONE.0079245
        • Ahmad A.A.
        • Randall M.D.
        • Roberts R.E.
        Sex differences in the role of phospholipase A2-dependent arachidonic acid pathway in the perivascular adipose tissue function in pigs.
        J. Physiol. 2017; 595: 6623-6634https://doi.org/10.1113/JP274831
        • Longo M.
        • Zatterale F.
        • Naderi J.
        • et al.
        Adipose tissue dysfunction as determinant of obesity-associated metabolic complications.
        Int. J. Mol. Sci. 2019; 20 (May)https://doi.org/10.3390/ijms20092358
        • Zatterale F.
        • Longo M.
        • Naderi J.
        • et al.
        Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes.
        Front. Physiol. 2020; 10 (Jan.): 1607https://doi.org/10.3389/FPHYS.2019.01607/BIBTEX
        • Ballesteros-Martínez C.
        • Rodrigues-Díez R.
        • Beltrán L.M.
        • et al.
        Microsomal prostaglandin E synthase-1 is involved in the metabolic and cardiovascular alterations associated with obesity.
        Br. J. Pharmacol. 2022; 179 (Jun.): 2733-2753https://doi.org/10.1111/BPH.15776
        • Zhong D.
        • Wan Z.
        • Cai J.
        • et al.
        mPGES-2 blockade antagonizes β-cell senescence to ameliorate diabetes by acting on NR4A1.
        Nat. Metab. 2022; 4 (Feb.): 269-283https://doi.org/10.1038/S42255-022-00536-6
        • Fortier S.M.
        • Penke L.R.
        • Peters-Golden M.
        Illuminating the lung regenerative potential of prostanoids.
        Sci. Adv. 2022; 8 (Mar.): 8322https://doi.org/10.1126/SCIADV.ABP8322/ASSET/EAF6978D-928F-4ADC-BBD0-81B9DBCB558C/ASSETS/IMAGES/LARGE/SCIADV.ABP8322-F1.JPG
        • Duffin R.
        • O'Connor R.A.
        • Crittenden S.
        • et al.
        Prostaglandin E2 constrains systemic inflammation through an innate lymphoid cell–IL-22 axis.
        Science. 2016; 351 (Mar.): 1333https://doi.org/10.1126/SCIENCE.AAD9903
        • Yasui M.
        • Tamura Y.
        • Minami M.
        • et al.
        The prostaglandin E2 receptor EP4 regulates obesity-related inflammation and insulin sensitivity.
        PLoS One. 2015; 10 (Aug.)https://doi.org/10.1371/JOURNAL.PONE.0136304
        • Yasui-Kato M.
        • Patlada S.
        • Yokode M.
        • Kamei K.
        • Minami M.
        EP4 signalling is essential for controlling islet inflammation by causing a shift in macrophage polarization in obesity/type 2 diabetes.
        Diabetes Vasc. Dis. Res. 2020; 17 (Jul.)https://doi.org/10.1177/1479164120945675