Advertisement

Radiosynthesis of 20-[18F]fluoroarachidonic acid for PET-MR imaging: Biological evaluation in ApoE4-TR mice

Published:October 19, 2022DOI:https://doi.org/10.1016/j.plefa.2022.102510

      Highlights

      • An increase in brain arachidonic acid (AA) uptake is a marker of calcium-dependent phospholipase A2 activation and neuroinflammation.
      • A novel translational synthesis approach of 20-[18F]fluoroarachidonic acid ([18F]-FAA) for PET imaging is presented.
      • [18F]-FAA showed bioequivalent signaling properties to AA in cells.
      • The brain incorporation coefficient (K*) of [18F]-FAA was estimated via multiple methods in ApoE4 targeted replacement mice using the image derived input function.
      • The application of [18F]-FAA PET imaging to humans has relevance to identify and guide the effectiveness of treatments focused on neuroinflammation in neurodegenerative diseases.

      Abstract

      Dysreglulated brain arachidonic acid (AA) metabolism is involved in chronic inflammation and is influenced by apolipoprotein E4 (APOE4) genotype, the strongest genetic risk factor of late-onset Alzheimer's disease (AD). Visualization of AA uptake and distribution in the brain can offer insight into neuroinflammation and AD pathogenesis. Here we present a novel synthesis and radiosynthesis of 20-[18F]fluoroarachidonic acid ([18F]-FAA) for PET imaging using a convergent route and a one-pot, single-purification radiolabeling procedure, and demonstrate its brain uptake in human ApoE4 targeted replacement (ApoE4-TR) mice. By examining p38 phosphorylation in astrocytes, we found that fluorination of AA at the ω-position did not significantly alter its biochemical role in cells. The brain incorporation coefficient (K*) of [18F]-FAA was estimated via multiple methods by using an image-derived input function from the right ventricle of the heart as a proxy of the arterial input function and brain tracer concentrations assessed by dynamic PET-MR imaging. This new synthetic approach should facilitate the practical [18F]-FAA production and allow its translation into clinical use, making investigations of dysregulation of lipid metabolism more feasible in the study of neurodegenerative diseases.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Prostaglandins, Leukotrienes and Essential Fatty Acids
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sanchez-Mejia R.O.
        • Mucke L.
        Phospholipase A2 and arachidonic acid in Alzheimer's disease.
        Biochim. Biophys. Acta. 2010; 1801: 784-790
        • Yassine H.N.
        • Finch C.E.
        APOE alleles and diet in brain aging and Alzheimer's disease.
        Front. Aging Neurosci. 2020; : 12
        • Abdullah L.
        • Evans J.E.
        • Emmerich T.
        • Crynen G.
        • Shackleton B.
        • Keegan A.P.
        • Luis C.
        • Tai L.
        • LaDu M.J.
        • Mullan M.
        • Crawford F.
        • Bachmeier C.
        APOE ε4 specific imbalance of arachidonic acid and docosahexaenoic acid in serum phospholipids identifies individuals with preclinical mild cognitive ompairment/Alzheimer's disease.
        Aging (Albany NY). 2017; 9: 964-985
        • Duro M.V.
        • Ebright B.
        • Yassine H.N.
        Lipids and brain inflammation in APOE4-associated dementia.
        Curr. Opin. Lipidol. 2022; 33: 16-24
        • Zimmer E.R.
        • Leuzy A.
        • Benedet A.L.
        • Breitner J.
        • Gauthier S.
        • Rosa-Neto P.
        Tracking neuroinflammation in Alzheimer's disease: the role of positron emission tomography imaging.
        J. Neuroinflam. 2014; 11 (-120): 120
        • Di Paolo G.
        • Kim T.W.
        Linking lipids to Alzheimer's disease: cholesterol and beyond.
        Nat. Rev. Neurosci. 2011; 12: 284-296
        • Patrick R.P.
        Role of phosphatidylcholine-DHA in preventing APOE4-associated Alzheimer's disease.
        Faseb J. 2019; 33: 1554-1564
        • Yassine H.N.
        • Rawat V.
        • Mack W.J.
        • Quinn J.F.
        • Yurko-Mauro K.
        • Bailey-Hall E.
        • Aisen P.S.
        • Chui H.C.
        • Schneider L.S.
        The effect of APOE genotype on the delivery of DHA to cerebrospinal fluid in Alzheimer's disease.
        Alzheimer's Res. therapy. 2016; 8: 25
        • Ebright B.
        • Assante I.
        • Poblete R.A.
        • Wang S.
        • Duro M.V.
        • Bennett D.A.
        • Arvanitakis Z.
        • Louie S.G.
        • Yassine H.N.
        Eicosanoid lipidome activation in post-mortem brain tissues of individuals with APOE4 and Alzheimer's dementia.
        Alzheimer's Res. Therapy. 2022; 14: 152
        • Wang S.
        • Li B.
        • Solomon V.
        • Fonteh A.
        • Rapoport S.I.
        • Bennett D.A.
        • Arvanitakis Z.
        • Chui H.C.
        • Sullivan P.M.
        • Yassine H.N.
        Calcium-dependent cytosolic phospholipase A2 activation is implicated in neuroinflammation and oxidative stress associated with ApoE4.
        Mol. Neurodegener. 2022; 17: 42
        • Tomaszewski N.
        • He X.
        • Solomon V.
        • Lee M.
        • Mack W.J.
        • Quinn J.F.
        • Braskie M.N.
        • Yassine H.N.
        Effect of APOE genotype on plasma docosahexaenoic acid (DHA), eicosapentaenoic acid, arachidonic acid, and hippocampal volume in the Alzheimer's disease cooperative study-sponsored DHA clinical trial.
        J. Alzheimers Dis. 2020; 74: 975-990
        • Giovacchini G.
        • Chang M.C.
        • Channing M.A.
        • Toczek M.
        • Mason A.
        • Bokde A.L.
        • Connolly C.
        • Vuong B.K.
        • Ma Y.
        • Der M.G.
        • Doudet D.J.
        • Herscovitch P.
        • Eckelman W.C.
        • Rapoport S.I.
        • Carson R.E.
        Brain incorporation of [11C]arachidonic acid in young healthy humans measured with positron emission tomography.
        J. Cereb. Blood Flow Metab. 2002; 22: 1453-1462
        • Pichika R.
        • Taha A.Y.
        • Gao F.
        • Kotta K.
        • Cheon Y.
        • Chang L.
        • Kiesewetter D.
        • Rapoport S.I.
        • Eckelman W.C.
        The synthesis and in vivo pharmacokinetics of fluorinated arachidonic acid: implications for imaging neuroinflammation.
        J. Nucl. Med. 2012; 53: 1383-1391
        • Esposito G.
        • Giovacchini G.
        • Liow J.S.
        • Bhattacharjee A.K.
        • Greenstein D.
        • Schapiro M.
        • Hallett M.
        • Herscovitch P.
        • Eckelman W.C.
        • Carson R.E.
        • Rapoport S.I.
        Imaging neuroinflammation in Alzheimer's disease with radiolabeled arachidonic acid and PET.
        J. Nucl. Med. 2008; 49: 1414-1421
        • Nagatsugi F.
        • Hokazono J.
        • Sasaki S.
        • Maeda M.
        Synthesis of 20-[18F] fluoroarachidonic acid: a potential phospholipid metabolic agent.
        J. Label. Compd. Radiopharm. 1994; 34: 1121-1127
        • DeGrado T.R.
        • Bhattacharyya F.
        • Pandey M.K.
        • Belanger A.P.
        • Wang S.
        Synthesis and preliminary evaluation of 18F-dluoro-4-thia-oleate as a PET probe of fatty acid oxidation.
        J. Nucl. Med. 2010; 51: 1310
        • Zhou S.
        • Chen K.
        • Reiman E.M.
        • Li D.M.
        • Shan B.
        A method for generating image-derived input function in quantitative 18F-FDG PET study based on the monotonicity of the input and output function curve.
        Nucl. Med. Commun. 2012; 33: 362-370
        • DeGeorge J.J.
        • Noronha J.G.
        • Bell J.
        • Robinson P.
        • Rapoport S.I.
        Intravenous injection of [1-14C]arachidonate to examine regional brain lipid metabolism in unanesthetized rats.
        J. Neurosci. Res. 1989; 24: 413-423
        • Patlak C.S.
        • Blasberg R.G.
        • Fenstermacher J.D.
        Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data.
        J. Cereb. Blood Flow Metab. 1983; 3: 1-7
        • Hwang S.H.
        • Wagner K.
        • Xu J.
        • Yang J.
        • Li X.
        • Cao Z.
        • Morisseau C.
        • Lee K.S.
        • Hammock B.D.
        Chemical synthesis and biological evaluation of ω-hydroxy polyunsaturated fatty acids.
        Bioorg. Med. Chem. Lett. 2017; 27: 620-625
        • Hii C.S.T.
        • Huang Z.H.
        • Bilney A.
        • Costabile M.
        • Murray A.W.
        • Rathjen D.A.
        • Der C.J.
        • Ferrante A.
        Stimulation of p38 ohosphorylation and activity by arachidonic acid in HeLa cells, HL60 promyelocytic leukemic cells, and human neutrophils: evidence for cell type-specific activation of mitogen-activated protein kinases.
        J. Biol. Chem. 1998; 273: 19277-19282
        • Evans J.
        • Ko Y.
        • Mata W.
        • Saquib M.
        • Eldridge J.
        • Cohen-Gadol A.
        • Leaver H.A.
        • Wang S.
        • Rizzo M.T.
        Arachidonic acid induces brain endothelial cell apoptosis via p38-MAPK and intracellular calcium signaling.
        Microvasc. Res. 2015; 98: 145-158
        • Basselin M.
        • Fox M.A.
        • Chang L.
        • Bell J.M.
        • Greenstein D.
        • Chen M.
        • Murphy D.L.
        • Rapoport S.I.
        Imaging elevated brain arachidonic acid signaling in unanesthetized serotonin transporter (5-HTT)-deficient mice.
        Neuropsychopharmacology. 2009; 34: 1695-1709
        • Rapoport S.I.
        In vivo fatty acid incorporation into brain phosholipids in relation to plasma availability, signal transduction and membrane remodeling.
        J. Mol. Neurosci. 2001; 16: 243-261
        • Basselin M.
        • Villacreses N.E.
        • Lee H.J.
        • Bell J.M.
        • Rapoport S.I.
        Chronic lithium administration attenuates up-regulated brain arachidonic acid metabolism in a rat model of neuroinflammation.
        J. Neurochem. 2007; 102: 761-772
        • Pathak A.P.
        • Kim E.
        • Zhang J.
        • Jones M.V.
        Three-dimensional imaging of the mouse neurovasculature with magnetic resonance microscopy.
        PLoS One. 2011; 6: e22643
        • Murphy E.J.
        • Rosenberger T.A.
        • Patrick C.B.
        • Rapoport S.I.
        Intravenously injected [1-14C]arachidonic acid targets phospholipids, and [1-14C]palmitic acid targets neutral lipids in hearts of awake rats.
        Lipids. 2000; 35: 891-898
        • Nagatsugi F.
        • Hokazono J.
        • Sasaki S.
        • Maeda M.
        20-[18F]Fluoroarachidonic acid: tissue biodistribution and incorporation into phospholipids.
        Biol. Pharm. Bull. 1996; 19: 1316-1321
        • Graham M.M.
        • Muzi M.
        • Spence A.M.
        • O'Sullivan F.
        • Lewellen T.K.
        • Link J.M.
        • Krohn K.A.
        The FDG lumped constant in normal human brain.
        J. Nucl. Med. 2002; 43: 1157-1166
        • Yassine H.N.
        • Croteau E.
        • Rawat V.
        • Hibbeln J.R.
        • Rapoport S.I.
        • Cunnane S.C.
        • Umhau J.C.
        DHA brain uptake and APOE4 status: a PET study with [1-11C]-DHA.
        Alzheimer's Res. Therapy. 2017; 9: 23
        • Lanfranco M.F.
        • Ng C.A.
        • Rebeck G.W.
        ApoE lipidation as a therapeutic target in Alzheimer's disease.
        Int. J. Mol. Sci. 2020; 21: 6336